Background: The combination of sonodynamic and photodynamic therapy (SPDT) may be a new hopeful non-invasive method for cancer treatment, which incorporates a combination of low-intensity ultrasound, laser radiation, and a sensitizer agent. Objectives: This study aimed at evaluating the effects of hematoporphyrin (HP)-mediated SPDT (dual-frequency ultrasound and laser radiation) in the management of mice breast adenocarcinoma. Methods: One hundred and thirty-two female mice with implanted tumors were divided into 22 groups, including sham, laser, 4 groups of dual-frequency ultrasound/laser radiation, 8 groups of HP-mediated SPDT (2.5 and 5 mg/kg), and 8 groups of HP encapsulated in mesoporous silica nanoparticles (HP-MSNs)-mediated SPDT. The sensitizer was administered by intraperitoneal injection and after a 24-hour delay, tumor grafted mice were treated with a combination of dual-frequency ultrasound and laser light. The tumor growth factors were used to assess the treatment outcome. Results: The results indicated that HP or HP-MSNs-mediated SPDT had a delaying tumor growth effect. In the groups treated with dual-frequency ultrasound and laser radiation, the maximum tumor growth inhibition (TGI) ratio was 47.5%, while the maximum TGI ratio in the SPDT groups was 61.6%. The time of T2 and T5 in the case of HP-MSNs-mediated SPDT groups was increased compared with sham and that of HP-mediated SPDT groups (P < 0.05). The inhibition ratio on tumor growth increased in all SPDT groups at 12 days after the treatment. Analysis of experimental data demonstrates that this increase was not declined and persisted over 30 days of treatment. The results indicated that SPDT is effective in relative tumor volume when compared with the sham group (339.1 ± 161 and 1510.8 ± 160, respectively). HP or HP-MSNs-mediated SPDT groups had Grade I (low), while others had Grade III (high) malignancy in the histological study of mice breast adenocarcinoma. Conclusions: The results revealed that when sensitized by dual-frequency SPDT, hematoporphyrin (with and without MSNs), has a promising effect at delaying tumor growth on mice breast cancer. Therefore, it can be appreciated that careful selection of the sensitizer with SPDT will play an eminent role in the success of cancer therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.