Background:Escherichia coli is a Gram-negative, opportunistic human pathogen in which increasing antibiotic resistance is a great concern for continued human survival. Although biofilm formation is a mechanism that helps E. coli to survive in unfavorable conditions, according to the importance of biofilm formation in developing the antibiotic resistance here, we studied the relation between antibiotic resistance and in vitro qualitative rating method biofilm formation in E. coli isolated from patients with urinary tract infection (UTI).Materials and Methods:The clinical isolates of E. coli (n = 100) were collected from urine of patients with UTI attending Isfahan Alzahra hospital. The strains were confirmed as E. coli using biochemical tests and molecular method. The Kirby-Bauer disk diffusion tests were done according to the Clinical and Laboratory Standards Institute protocol, and the biofilm synthesis was performed by microplate method. The binary logistic test was applied and P < 0.05 was considered statistically significant.Results:Our results showed a high outbreak of multidrug-resistant (MDR) E. coli strains (73%) and the highest resistance was observed toward ampicillin. The prevalence of biofilm producer isolates was 80% that 29% produced strong biofilm. The distribution of non-MDR isolates was high among strong biofilm producers, which shows a significant negative correlation between biofilm production and MDR pattern (P < 0.001).Conclusions:We found a negative correlation between MDR phenotype and biofilm formation capacity. This transmits the concept that more antibiotic susceptibility of strong biofilm producers may be due to the reduced exposure to multiple antibiotics.
The rapid advancement of nanotechnology in recent years has opened new avenues of investigation for biomedical sciences. Viral nanoparticles (VNPs) are formulated from plant viruses, mammalian viruses, or bacteriophages. Based on their structure, viruses, and synthetic carriers have been utilized to design bio‐inspired nanocarriers, which serve as building blocks for innovative therapeutic applications. Scientists can chemically or genetically engineer VNPs to encompass various properties, such as enhancing their functionalization with therapeutic molecules and imaging reagents, enabling targeted delivery to specific ligands. The implementation of these novel nanocarrier platforms can revolutionize treatments for cancer, infectious diseases, and chronic illnesses. The primary goal of drug delivery systems is to localize cargo to the specific target site, increasing therapeutic benefits and minimizing off‐target effects. This review critically evaluates the major virus species used as nanocarriers, their applications in therapeutics, and their advantages and disadvantages.
Background Query ID="Q1" Text="Graphical abstract: As per journal requirements, graphical abstract is necessary. Kindly check and provide the same."The magnitude of the health problems caused by leishmaniasis has been a major driving factor behind the development and implementation of leishmaniasis control programs by the national authorities in Iran, with a priority for health and environmental management. Such programs are not achievable unless all of the factors leading to the infection, including the parasite’s life-cycle, vectors and reservoirs, are recognized. So far in Iran, humans and rodents have been considered the principal reservoirs of Leishmania tropica and Leishmania major, respectively, both associated with cutaneous leishmaniasis (CL), with domestic dogs considered to be the main reservoir for Leishmania infantum, associated with visceral leishmaniasis (VL). The role of other mammals in maintaining the Leishmania parasite has remained unclear. This study aimed to investigate Leishmania infection among livestock in endemic areas of VL and CL in Fars province, southern Iran, using serological and molecular methods. Methods Blood samples from 181 clinically healthy livestock, including 49 sheep, 114 goats, 16 cattle and two donkeys, were screened to detect Leishmania DNA and anti-Leishmania antibodies using qPCR (quantitative PCR) and the direct agglutination test (DAT), respectively. Four qPCR-positive samples were amplified using the internal transcribed spacer one (ITS1) primers in conventional PCR and sent for directional sequencing. Results Of the 181 livestock tested, 51 (28.2%) were infected with Leishmania, using serological and molecular methods. Anti-Leishmania antibodies were detected in 70 (38.7%) (95% confidence interval [CI]: 31.5–46.2) and Leishmania DNA in 93 (51.4%) (95% CI: 43.9–58.9) livestock. The identified Leishmania spp. were L. infantum and L. major. Conclusions The findings of the present study show a relatively high prevalence of Leishmania infection among livestock in endemic areas of the disease, in Fars province, southern Iran. Given the large population of this group of animals and the fact that they live in the vicinity of the main reservoirs of the disease and vectors, it seems that sand flies regularly bite these animals. Further studies are needed to determine the role of livestock in the parasite’s life-cycle and the epidemiology of Leishmania infection. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.