Background: Severe acute respiratory syndromecoronavirus-2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), is responsible for the largest pandemic since the 1918 influenza A virus subtype H1N1 influenza outbreak. The symptoms presently recognized by the World Health Organization are cough, fever, tiredness, and difficulty breathing. Patient-reported smell and taste loss has been associated with COVID-19 infection, yet no empirical olfactory testing on a cohort of COVID-19 patients has been performed. Methods: The University of Pennsylvania Smell Identification Test (UPSIT), a well-validated 40-odorant test, was administered to 60 confirmed COVID-19 inpatients and 60 age-and sex-matched controls to assess the magnitude and frequency of their olfactory dysfunction. A mixed effects analysis of variance determined whether meaningful differences in test scores existed between the 2 groups and if the test scores were differentially influenced by sex. Results: Fi y-nine (98%) of the 60 patients exhibited some smell dysfunction (mean [95% CI] UPSIT score: 20.98 [19.47, 22.48]; controls: 34.10 [33.31, 34.88]; p < 0.0001). Thirty-five of the 60 patients (58%) were either anosmic (15/60; 25%) or severely microsmic (20/60; 33%); 16 exhibited moderate microsmia (16/60; 27%), 8 mild microsmia (8/60; 13%), and 1 normosmia (1/60; 2%). Deficits were evident for all 40 UPSIT odorants. No meaningful relationships between the test scores and sex, disease severity, or comorbidities were found. Conclusion: Quantitative smell testing demonstrates that decreased smell function, but not always anosmia, is a major marker for SARS-CoV-2 infection and suggests the possibility that smell testing may help, in some cases, to identify COVID-19 patients in need of early treatment or quarantine.
Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, and generally lacked quantitative measurements. Here, we report the development, implementation and initial results of a multi-lingual, international questionnaire to assess self-reported quantity and quality of perception in three distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, 8 other, ages 19-79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change ±100) revealed a mean reduction of smell (-79.7 ± 28.7, mean ± SD), taste (-69.0 ± 32.6), and chemesthetic (-37.3 ± 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell, but also affects taste and chemesthesis. The multimodal impact of COVID-19 and lack of perceived nasal obstruction suggest that SARS-CoV-2 infection may disrupt sensory-neural mechanisms.
In a preregistered, cross-sectional study we investigated whether olfactory loss is a reliable predictor of COVID-19 using a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n=4148) or negative (C19-; n=546) COVID-19 laboratory test outcome. Logistic regression models identified univariate and multivariate predictors of COVID-19 status and post-COVID-19 olfactory recovery. Both C19+ and C19- groups exhibited smell loss, but it was significantly larger in C19+ participants (mean±SD, C19+: -82.5±27.2 points; C19-: -59.8±37.7). Smell loss during illness was the best predictor of COVID-19 in both univariate and multivariate models (ROC AUC=0.72). Additional variables provide negligible model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms (e.g., fever). Olfactory recovery within 40 days of respiratory symptom onset was reported for ~50% of participants and was best predicted by time since respiratory symptom onset. We find that quantified smell loss is the best predictor of COVID-19 amongst those with symptoms of respiratory illness. To aid clinicians and contact tracers in identifying individuals with a high likelihood of having COVID-19, we propose a novel 0-10 scale to screen for recent olfactory loss, the ODoR-19. We find that numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (4<OR<10). Once independently validated, this tool could be deployed when viral lab tests are impractical or unavailable.
Background Considerable evidence suggests that smell dysfunction is common in coronavirus disease-COVID-Unfortunately extant data on prevalence and reversibility over time are highly variable coming mainly from self-report surveys prone to multiple biases Thus validated psychophysical olfactory testing is sorely needed to establish such parameters Methods One hundred severe acute respiratory syndrome-coronavirus-SARS-CoV-positive patients were administered the-item University of Pennsylvania Smell Identification Test UPSIT in the hospital near the end of the acute phase of the disease Eighty-two were retested or weeks later at home The data were analyzed using analysis of variance and mixed-effect regression models Results Initial UPSIT scores were indicative of severe microsmia with exhibiting measurable dysfunction were anosmic The scores improved upon retest initial test mean confidence interval CI retest mean CI-p < no patient remained anosmic A er weeks from COVIDsymptom onset the test scores of of the retested patients were normal However the mean UPSIT score at that time continued to remain below that of age-and sexmatched healthy controls p < Such scores were related to time since symptom onset sex and age Conclusion Smell loss was extremely common in the acute phase of a cohort of COVID-patients when objectively measured About one third of cases continued to exhibit dysfunction to weeks a er symptom onset These findings have direct implications for the use of olfactory testing in identifying SARS-CoV-carriers and for counseling such individuals with regard to their smell dysfunction and its reversibility © 2020 ARS-AAOA, LLC.
Background: Sudden smell loss is a specific early symptom of COVID-19, which, prior to the emergence of Omicron, had estimated prevalence of ~40% to 75%. Chemosensory impairments affect physical and mental health, and dietary behavior. Thus, it is critical to understand the rate and time course of smell recovery. The aim of this cohort study was to characterize smell function and recovery up to 11 months post COVID-19 infection. Methods: This longitudinal survey of individuals suffering COVID-19-related smell loss assessed disease symptoms and gustatory and olfactory function. Participants (n=12,313) who completed an initial survey (S1) about respiratory symptoms, chemosensory function and COVID-19 diagnosis between April and September 2020, were invited to complete a follow-up survey (S2). Between September 2020 and February 2021, 27.5% participants responded (n=3,386), with 1,468 being diagnosed with COVID-19 and suffering co-occurring smell and taste loss at the beginning of their illness. Results: At follow-up (median time since COVID-19 onset ~200 days), ~60% of women and ~48% of men reported less than 80% of their pre-illness smell ability. Taste typically recovered faster than smell, and taste loss rarely persisted if smell recovered. Prevalence of parosmia and phantosmia was ~10% of participants in S1 and increased substantially in S2: ~47% for parosmia and ~25% for phantosmia. Persistent smell impairment was associated with more symptoms overall, suggesting it may be a key marker of long-COVID illness. The ability to smell during COVID-19 was rated slightly lower by those who did not eventually recover their pre-illness ability to smell at S2. Conclusions: While smell ability improves for many individuals who lost it during acute COVID-19, the prevalence of parosmia and phantosmia increases substantially over time. Olfactory dysfunction is associated with broader persistent symptoms of COVID-19, and may last for many months following acute COVID-19. Taste loss in the absence of smell loss is rare. Persistent qualitative smell symptoms are emerging as common long-term sequelae; more research into treatment options is strongly warranted given that even conservative estimates suggest millions of individuals may experience parosmia following COVID-19. Healthcare providers worldwide need to be prepared to treat post COVID-19 secondary effects on physical and mental health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.