To understand the mode of persistent infection of Seoul virus in rodents, we examined the distribution of the virus genome and antibody production in infected rats. When 1-day-old rats were inoculated with the KI-83-262 strain, the S segment of viral genome was detected in sera, clots, lungs and kidneys from 3 to 184 days post inoculation (d.p.i.) by nested reverse transcriptase PCR. On the other hand, when 7-week-old rats were infected with this virus, viral genome was detected only in the lungs from 3 to 50 d.p.i. The neutralizing antibody titers of rats inoculated at 1-day of age were higher than those of rats inoculated at 7 weeks of age. In both age groups, however, the IgG avidity of antibody increased along with the course of infection. We found that urban rats (Rattus norvegicus) infected early in life harbored the virus for more than 6 months.
Putative animal reservoirs and environmental samples were studied to investigate potential routes of transmission for indigenous hepatitis E virus (HEV) infection in Hokkaido, Japan. A total of 468 liver samples and 954 environmental samples were collected from 2003 to 2011 for this study. Four swine livers (1 %) were positive for HEV RNA; two strains belonged to genotype 3 and the other two strains were genotype 4. Genotype 3 HEV was detected in a sewage sample and a seawater sample. HEV strains derived from swine liver, seawater and raw sewage samples shared 93-100 % sequence similarity with human HEV strains.
The RNA-dependent RNA polymerase (RdRp) and capsid (VP1) genes of 51 GII.2 human norovirus (HuNoV) strains collected during the period of 2004–2015 in Japan were analyzed. Full-length analyses of the genes were performed using next-generation sequencing. Based on the gene sequences, we constructed the time-scale evolutionary trees by Bayesian Markov chain Monte Carlo methods. Time-scale phylogenies showed that the RdRp and VP1 genes evolved uniquely and independently. Four genotypes of GII.2 (major types: GII.P2-GII.2 and GII.P16-GII.2) were detected. A common ancestor of the GII.2 VP1 gene existed until about 1956. The evolutionary rates of the genes were high (over 10−3 substitutions/site/year). Moreover, the VP1 gene evolution may depend on the RdRp gene. Based on these results, we hypothesized that transfer of the RdRp gene accelerated the VP1 gene evolution of HuNoV genotype GII.2. Consequently, recombination between ORF1 (polymerase) and ORF2 (capsid) might promote changes of GII.2 antigenicity.
We studied the molecular evolution of the capsid gene in all genotypes (genotypes 1–9) of human norovirus (NoV) genogroup I. The evolutionary time scale and rate were estimated by the Bayesian Markov chain Monte Carlo (MCMC) method. We also performed selective pressure analysis and B-cell linear epitope prediction in the deduced NoV GI capsid protein. Furthermore, we analysed the effective population size of the virus using Bayesian skyline plot (BSP) analysis. A phylogenetic tree by MCMC showed that NoV GI diverged from the common ancestor of NoV GII, GIII, and GIV approximately 2,800 years ago with rapid evolution (about 10−3 substitutions/site/year). Some positive selection sites and over 400 negative selection sites were estimated in the deduced capsid protein. Many epitopes were estimated in the deduced virus capsid proteins. An epitope of GI.1 may be associated with histo-blood group antigen binding sites (Ser377, Pro378, and Ser380). Moreover, BSP suggested that the adaptation of NoV GI strains to humans was affected by natural selection. The results suggested that NoV GI strains evolved rapidly and date back to many years ago. Additionally, the virus may have undergone locally affected natural selection in the host resulting in its adaptation to humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.