Influenza A virus (IAV) has evolved multiple mechanisms to compromise type I interferon (IFN) responses. The antiviral function of IFN is mainly exerted by activating the JAK/STAT signalling and subsequently inducing IFN‐stimulated gene (ISG) production. However, the mechanism by which IAV combat the type I IFN signalling pathway is not fully elucidated. In this study, we explored the roles of human microRNAs modulated by IAV infection in type I IFN responses. We demonstrated that microRNA‐30 (miR‐30) family members were downregulated by IAV infection. Our data showed that the forced expression of miR‐30 family members inhibited IAV proliferation, while miR‐30 family member inhibitors promoted IAV proliferation. Mechanistically, we found that miR‐30 family members targeted and reduced SOCS1 and SOCS3 expression, and thus relieved their inhibiting effects on IFN/JAK/STAT signalling pathway. In addition, miR‐30 family members inhibited the expression of NEDD4, a negative regulator of IFITM3, which is important for host defence against influenza viruses. Our findings suggest that IAV utilises a novel strategy to restrain host type I IFN‐mediated antiviral immune responses by decreasing the expression of miR‐30 family members, and add a new way to understand the mechanism of immune escape caused by influenza viruses.
RIG-I and MDA5 are two key pattern recognition receptors that sense RNA virus invasion, but RIG-I is absent in chickens. Although chickens have intact MDA5, the genes downstream of chicken MDA5 (chMDA5) that may mediate antiviral response are not well studied. We compared the transcriptional profile of chicken embryonic fibroblasts (DF1) transfected with chMDA5, and poly(I:C), using RNA-seq. Transfected chMDA5 and poly(I:C) in DF1 cells were associated with the marked induction of many antiviral innate immune genes compared with control. Interestingly, nine interferon-stimulated genes (ISGs) were listed in the top 15 upregulated genes by chMDA5 and poly(I:C) transfection. We used real-time PCR to confirm the upregulation of the nine ISGs, namely, MX1, IFI6, IFIT5, RSAD2, OASL, CMPK2, HELZ2, EPSTI1, and OLFML1, by chMDA5 and poly(I:C) transfection in DF1 cells. However, avian influenza virus H5N6 infection only increased MX1, IFI6, IFIT5, RSAD2, and OASL expression levels. Further study showed that the overexpression of these five genes could significantly inhibit H5N6 virus replication. These results provide some insights into the gene expression pattern induced by chMDA5, which would be beneficial for understanding and identifying innate immune genes of chicken that may lead to new antiviral therapies.
African swine fever (ASF) is a serious transnational disease caused by the African swine fever virus (ASFV), which is highly contagious in wild boars and domestic pigs. There is currently no available vaccine for ASF; therefore, development efforts are a key priority as ASFV continues to evolve and diversify.
RIG-I and MDA5 are two key pattern recognition receptors that sense the invasion of RNA viruses and initiate type I interferon (IFN) response. Although these receptors are generally conserved in vertebrates, RIG-I is absent in chickens, whereas MDA5 is present. Chicken MDA5 (chMDA5) plays a pivotal role in sensing the invasion of RNA viruses into cells. However, unlike mammalian MDA5, where there are in-depth and extensive studies, regulation of the chMDA5-mediated signaling pathway remains unexplored. In this study, we performed a pulldown assay and mass spectrometry analysis to identify chicken proteins that could interact with the N terminal of chMDA5 (chMDA5-N) that contained two CARDs responsible for binding of the well-known downstream adaptor MAVS. We found that 337 host proteins could potentially interact with chMDA5-N, which were integrated to build a chMDA5-N–host association network and analyzed by KEGG pathway and Gene Ontology annotation. Results of our analysis revealed that diverse cellular processes, such as RNA binding and transport and protein translation, ribosome, chaperones, and proteasomes are critical cellular factors regulating the chMDA5-mediated signaling pathway. We cloned 64 chicken genes to investigate their effects on chMDA5-mediated chicken IFN-β production and confirmed the association of chicken DDX5, HSPA8, HSP79, IFIT5, PRDX1, and hnRNPH2 with chMDA5-N. In particular, we found that chicken hnRNPH2 impairs the association between chMDA5-N and MAVS and thus acts as a check on the chMDA5-mediated signaling pathway. To our knowledge, this study is the first to analyze the chicken MDA5–host interactome, which provides fundamental but significant insights to further explore the mechanism of chicken MDA5 signaling regulation in detail.
Reassortment is a key driving force of the evolution and host adaptation of the influenza virus. A(H1N1)pdm2009 (pdm09), a novel H1N1 influenza viral subtype, caused a pandemic in 2009. The strain was established in pig herds and cocirculated with the highly pathogenic H5N1 avian influenza virus. The coexistence of pdm09 with H5N1 raises concerns that reassortment may cause the development of novel viral strains with unpredictable virulence. Given that the viral polymerase subunit PB2 is a determinant of host range and pathogenicity, and that the substantial amino acid differences in PB2 between pdm09 and H5N1, including positions 590/591 and 271, which are shown to play key roles in enhanced polymerase activity in mammalian host cells, we generated a reassortant virus containing PB2 derived from a pdm09 (A/Liaoning/1/2009, LN/09) to investigate if pdm09-derived PB2 can function in a heterologous avian virus isolate as an adaptive strategy, with H5N1 (A/duck/Hubei/hangmei01/2006, HM/06) as the backbone. We assessed the biological characteristics, including pathogenicity, replication, and polymerase activity, of the reassortant. Compared with HM/06 and LN/09, H5N1 hybrid virus containing PB2 from LN/09 exhibited significantly increased pathogenicity in mice and proliferation activity in mammalian cell lines, as well as markedly enhanced polymerase activity. Our results indicate that the coexistence of H5N1 and pdm09 may pose a great threat to public health through reassortment. Moreover, our results highlight the importance of monitoring the emergence of H5N1 reassortants containing pdm09-derived PB2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.