SummaryCommensal and pathogenic strains of Escherichia coli possess three inducible acid resistance systems that collaboratively protect cells against acid stress to pH 2 or below. The most effective system requires glutamate in the acid challenge media and relies on two glutamate decarboxylases (GadA and B) combined with a putative glutamate: g g g g -aminobutyric acid antiporter (GadC). A complex network of regulators mediates induction of this system in response to various media, pH and growth phase signals. We report that the LuxR-like regulator GadE (formerly YhiE) is required for expression of gadA and gadBC regardless of media or growth conditions. This protein binds directly to the 20 bp GAD box sequence found in the control regions of both loci. Two previously identified AraC-like regulators, GadX and GadW, are only needed for gadA/BC expression under some circumstances. Overexpression of GadX or GadW will not overcome a need for GadE. However, overexpression of GadE can supplant a requirement for GadX and W. Data provided also indicate that GadX and GadE can simultaneously bind the area around the GAD box region and probably form a complex. The gadA , gadBC and gadE genes are all induced by low pH in exponential phase cells grown in minimal glucose media. The acid induction of gadA/BC results primarily from the acid induction of gadE . Constitutive expression of GadE removes most pH control over the glutamate decarboxylase and antiporter genes. The small amount of remaining pH control is governed by GadX and W. The finding that gadE mutations also diminish the effectiveness of the other two acid resistance systems suggests that GadE influences the expression of additional acid resistance components. The number of regulatory proteins (five), sigma factors (two) and regulatory feedback loops focused on gadA/BC expression make this one of the most intensively regulated systems in E. coli .
In Yersinia pestis, the causative agent of plague, two inorganic iron transport systems have been partially characterized. The yersiniabactin (Ybt) system is a siderophore-dependent transport system required for full virulence. Yfe is an ABC transport system that accumulates both iron and manganese. We have identified and cloned a Y. pestis yfuABC operon. The YfuABC system is a member of the cluster of bacterial ABC iron transporters that include Sfu of Serratia, Hit of Haemophilus, and Yfu of Yersinia enterocolitica. The Y. pestis KIM6؉ system is most homologous to that in Y. enterocolitica, showing identities of 84% for YfuA (periplasmic binding protein), 87% for YfuB (inner membrane permease), and 75% for YfuC (ATP hydrolase). We constructed a yfuABC promoter-lacZ fusion to examine regulation of transcription. This promoter contains a potential Fur binding sequence and is iron and Fur regulated. Significant expression from the yfuABC promoter occurred during iron-deficient growth conditions. In vitro transcription and translation of a recombinant plasmid encoding yfuABC indicates that YfuABC proteins are expressed. Escherichia coli 1017 (an enterobactin-deficient mutant) carrying this plasmid was able to grow in an iron-restrictive complex medium. We constructed a deletion encompassing the yfuABC promoter and most of yfuA. This mutation was introduced into strains with mutations in Ybt, Yfe, or both systems to examine the role of Yfu in iron acquisition in Y. pestis. Growth of the yfu mutants in a deferrated, defined medium (PMH2) at 26 and 37°C failed to identify a growth or iron transport defect due to the yfu mutation. Fifty percent lethal dose studies in mice did not demonstrate a role for the Yfu system in mammalian virulence.
To survive in extremely acidic conditions, Escherichia coli has evolved three adaptive acid resistance strategies thought to maintain internal pH. While the mechanism behind acid resistance system 1 remains enigmatic, systems 2 and 3 are known to require external glutamate (system 2) and arginine (system 3) to function. These latter systems employ specific amino acid decarboxylases and putative antiporters that exchange the extracellular amino acid substrate for the intracellular by-product of decarboxylation. Although GadC is the predicted antiporter for system 2, the antiporter specific for arginine/agmatine exchange has not been identified. A computer-based homology search revealed that the yjdE (now called adiC) gene product shared an overall amino acid identity of 22% with GadC. A series of adiC mutants isolated by random mutagenesis and by targeted deletion were shown to be defective in arginine-dependent acid resistance. This defect was restored upon introduction of an adiC ؉ -containing plasmid. An adiC mutant proved incapable of exchanging extracellular arginine for intracellular agmatine but maintained wild-type levels of arginine decarboxylase protein and activity. Western blot analysis indicated AdiC is an integral membrane protein.These data indicate that the arginine-to-agmatine conversion defect of adiC mutants was at the level of transport. The adi gene region was shown to be organized into two transcriptional units, adiAY and adiC, which are coordinately regulated but independently transcribed. The data also illustrate that the AdiA decarboxylase: AdiC antiporter system is designed to function only at acid levels sufficient to harm the cell.
We show that Legionella pneumophila possesses lysophospholipase A activity, which releases fatty acids from lysophosphatidylcholine. The NH 2 -terminal sequence of the enzyme contained FGDSLS, corresponding to a catalytic domain in a recently described group of lipolytic enzymes. Culture supernatants of a L. pneumophila pilD mutant lost the ability to cleave lysophosphatidylcholine.
SummaryEscherichia coli survives pH 2 acid stress at a level rivalling Helicobacter pylori . Of the three E. coli acid resistance systems involved, the one most efficient and most studied uses isozymes of glutamate decarboxylase (GadA/GadB) to consume intracellular protons, and a glutamate: g g g g -amino butyric acid (GABA) anti-porter (GadC) to expel GABA in exchange for extracellular glutamate. Because acid resistance is a critical factor in resisting stomach acidity, mechanisms that control this system are extremely important. Here we show that an Era-like, molecular switch GTPase called TrmE regulates glutamate-dependent acid resistance. Western blot analysis revealed a TrmE-dependent, glucoseinduced system and a TrmE-independent, glucoserepressed pathway. Gene fusion studies indicated that the TrmE requirement for GadA/B production takes place at both the transcriptional and translational levels. TrmE controls GAD transcription by affecting the expression of GadE, the essential activator of the gadA and gadBC genes. TrmE most probably controls gadE expression indirectly by influencing the synthesis or activity of an unknown regulator that binds the gadE control region. Translational control of GAD production by TrmE appears to be more direct, affecting synthesis of the decarboxylase and the anti-porter proteins. TrmE GTPase activity was critical for both the transcriptional and translational effects. Thus, TrmE is part of an increasingly complex control network designed to integrate diverse physiological signals and forecast future exposures to extreme acid. The significance of this network extends beyond acid resistance as the target of this control, GadE, regulates numerous genes in addition to gadA/BC .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.