The synthesis and single-crystal X-ray structures of two quinacridone derivatives, N,N'-di(n-butyl)quinacridone (1) and N,N'-di(n-butyl)-1,3,8,10-tetramethylquinacridone (2), are reported, and the 1H NMR, absorption, photoluminescent (PL), and electroluminescent (EL) characteristics are presented. Both these crystal structures are characterized by intermolecular pi...pi and hydrogen bonding interactions. The intermolecular pi...pi interactions lead to the formation of molecular columns in the solids of 1 and 2, and the interplanar contact distances between two adjacent molecules are 3.48 and 3.55 angstroms, respectively. Crystals of 1 display shorter intermolecular pi...pi contacts and higher density than 2. These results suggest that tighter intermolecular interactions exist in 1. The 1H NMR, absorption, and PL spectra of 1 and 2 in solutions exhibit concentration-dependent properties. The PL quantum yields of 1 in solutions decrease more quickly with the increase of concentration compared to that of 2 in solutions. For solid thin films of Alq3:1 (Alq3 = tris(8-hydroxyquinolinato)aluminum), emission intensities dramatically decrease and obvious red shifts are observed when the dopant concentration is above 4.2%, while for films of Alq3:2, a similar phenomenon occurs when the concentration is above 6.7%. EL devices with Alq3:1 as emitting layer only show high efficiencies (20.3-14.5 cd/A) within the narrow dopant concentration range of 0.5-1.0%. In contrast, high efficiencies (21.5-12.0 cd/A) are achieved for a wider dopant concentration range of 0.5-5.0% when Alq3:2 films are employed as emitting layer. The different PL and EL concentration-dependent properties of the solid thin films Alq3:1 and Alq3:2 are attributed to their different molecular packing characteristics in the solid state.
Constitutional dynamic libraries of hydrazones (a)A(b)B and acylhydrazones (a)A(c)C undergo reorganization and adaptation in response to a chemical effector (metal cations) or a physical stimulus (light). The set of hydrazones [(1)A(1)B, (1)A(2)B, (2)A(1)B, (2)A(2)B] undergoes metalloselection on addition of zinc cations which drive the amplification of Zn((1)A(2)B)2 by selection of the fittest component (1)A(2)B. The set of acylhydrazones [E-(1)A(1)C, (1)A(2)C, (2)A(1)C, (2)A(2)C] undergoes photoselection by irradiation of the system, which causes photoisomerization of E-(1)A(1)C into Z-(1)A(1)C with amplification of the latter. The set of acyl hydrazones [E-(1)A(1)C, (1)A(3)C, (2)A(1)C, (2)A(3)C] undergoes a dual adaptation via component exchange and selection in response to two orthogonal external agents: a chemical effector, metal cations, and a physical stimulus, light irradiation. Metalloselection takes place on addition of zinc cations which drive the amplification of Zn((1)A(3)C)2 by selection of the fittest constituent (1)A(3)C. Photoselection is obtained on irradiation of the acylhydrazones that leads to photoisomerization from E-(1)A(1)C to Z-(1)A(1)C configuration with amplification of the latter. These changes may be represented by square constitutional dynamic networks that display up-regulation of the pairs of agonists ((1)A(2)B, (2)A(1)B), (Z-(1)A(1)C, (2)A(2)C), ((1)A(3)C, (2)A(1)C), (Z-(1)A(1)C, (2)A(3)C) and the simultaneous down-regulation of the pairs of antagonists ((1)A(1)B, (2)A(2)B), ((1)A(2)C, (2)A(1)C), (E-(1)A(1)C, (2)A(3)C), ((1)A(3)C, (2)A(1)C). The orthogonal dual adaptation undergone by the set of acylhydrazones amounts to a network switching process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.