We are building an interactive, visual text analysis tool that aids users in analyzing a large collection of text. Unlike existing work in text analysis, which focuses either on developing sophisticated text analytic techniques or inventing novel visualization metaphors, ours is tightly integrating state-of-the-art text analytics with interactive visualization to maximize the value of both. In this paper, we focus on describing our work from two aspects. First, we present the design and development of a time-based, visual text summary that effectively conveys complex text summarization results produced by the Latent Dirichlet Allocation (LDA) model. Second, we describe a set of rich interaction tools that allow users to work with a created visual text summary to further interpret the summarization results in context and examine the text collection from multiple perspectives. As a result, our work offers two unique contributions. First, we provide an effective visual metaphor that transforms complex and even imperfect text summarization results into a comprehensible visual summary of texts. Second, we offer users a set of flexible visual interaction tools as the alternatives to compensate for the deficiencies of current text summarization techniques. We have applied our work to a number of text corpora and our evaluation shows the promise of the work, especially in support of complex text analyses.
Recent technological advances have made it possible to build real-time, interactive spoken dialogue systems for a wide variety of applications. However, when users do not respect the limitations of such systems, performance typically degrades. Although users differ with respect to their knowledge of system limitations, and although different dialogue strategies make system limitations more apparent to users, most current systems do not try to improve performance by adapting dialogue behavior to individual users. This paper presents an empirical evaluation of TOOT, an adaptable spoken dialogue system for retrieving train schedules on the web. We conduct an experiment in which 20 users carry out 4 tasks with both adaptable and non-adaptable versions of TOOT, resulting in a corpus of 80 dialogues. The values for a wide range of evaluation measures are then extracted from this corpus. Our results show that adaptable TOOT generally outperforms non-adaptable TOOT, and that the utility of adaptation depends on TOOT's initial dialogue strategies. ⋆ We thank J. Chu-Carroll, C. Kamm, D. Lewis, M. Walker, and S. Whittaker for helpful comments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.