Considering the multiscale characteristics of the human visual system and any natural scene, the spatial autocorrelation of remotely sensed imagery, and the multilevel spatial structure of ground targets in remote sensing images, an information-measurement approach based on a single-level geometrical mapping model can only reflect partial feature information at a single level (e.g., global statistical information and local spatial distribution information). The single mapping model cannot validly characterize the information of the multilevel and multiscale features of the spatial structures inherent in remotely sensed images. Additionally, the validity, practicability, and application range of the results of single-level mapping models are greatly limited in practical applications. In this paper, we present the multilevel geometrical mapping entropy (MGME) model to evaluate the information content of related attribute characteristics contained in remotely sensed images. Subsequently, experimental images with different types of objects, including reservoir area, farmland, water area (i.e., water and trees), and mountain area, were used to validate the performance of the proposed method. Experimental results show that the proposed method can not only reflect the difference in the information of images in terms of spectrum features, spatial structural features, and visual perception but also eliminates the inadequacy of a single-level mapping model. That is, the multilevel mapping strategy is feasible and valid. Additionally, the vector set of the MGME method and its standard deviation (Std) value can be used to further explore and study the spatial dependence of ground scenes and the difference in the spatial structural characteristics of different objects.
Abstract. Due to being affected by the rapid development of open science and the increasing popularity of mobile devices (e.g., smartphones), remote sensing data as frequently used data sources are broadly applied to our daily life. At the same time, remote sensing data collection also presents a trend of popularization. To improve the utilization efficiency and availability of the obtained diversified remote sensing data, we propose a novel evaluation method based on information theory and scatterplot mapping model, i.e., geometrical mapping entropy (GME). The goal is to construct a unified model of measurement to be much more effectively and accurately evaluate the information content and quality of remotely sensed imagery. Different experimental data are used to verify the performance of the proposed method, i.e., a group of the dataset that contains different four types of images; the other group of image data contains the images with different modalities and different imaging times (2016–05, 2017–08, 2018–04, and 2018–06). Experimental results indicate that the proposed approach can better characterize the spectrum features and spatial structural features contained in images and visual perception information. Additionally, it can also reflect the difference in the quality of different modality images, especially the effect for the images that contain clouds or poor lighting conditions, is better.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.