We propose a novel time-stepping scheme for solving the Allen–Cahn equation. We first rewrite the free energy into an equivalent form and then obtain a new Allen–Cahn equation by energy variational formula of L 2 -gradient flow. Using leapfrog formula, a new linear scheme is obtained, and we prove that the numerical scheme is unconditionally energy stable and uniquely solvable, and the discrete energy is in agreement with the original free energy. In addition, we also discuss the uniform boundedness and error estimate of numerical solution, the results show that the numerical solution is uniformly bounded in H 2 -norm, and error estimate shows that the time-stepping scheme can achieve second-order accuracy in time direction. At last, several numerical tests are illustrated to verify the theoretical results. The numerical strategy developed in this paper can be easily applied to other gradient flow models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.