The instability of the ocean waves, such as intermittence, randomness, and irregularity, greatly affects the application of a triboelectric nanogenerator (TENG) in its aspects and leads to the irregularity and uncontrollability of its output performance. Hence, the energy storage TENG (ES-TENG) based on the ratchet mechanism is proposed in this work. The ES-TENG uses the ratchet mechanism to store the wave energy in the clockwork spring and then releases it in a centralized way to convert the wave energy into electric energy. When the ES-TENG adopts this method, the change of external excitation does not affect its output performance. Simultaneously, the shell of the ES-TENG is duck-shaped, which can better adapt to the wave environment. The peak power, open-circuit voltage, and short-circuit current of the ES-TENG are 6.2 mW, 495 V, and 19 μA, respectively. In the simulated wave experiment, the ES-TENG can successfully drive a temperature sensor. In summary, this work shows an economic, environmental friendly TENG that can adapt to the wave motion, and its output performance is not affected by wave instability, which has an important guiding significance for the further development and utilization of TENG in ocean energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.