Three-dimensional tactile sensing in smart devices is witnessing an increasing demand. In this study, a three-dimensional tactile sensor is proposed according to the principle of triboelectricity by using polydimethylsiloxane (PDMS) and polyethylene oxide (PEO) films. Use of PDMS-ZnO composite films increases the output voltage of the electrodes. The sensor is designed with a cross beam-shaped pressure head to enable sensing normal forces in five directions. The working mechanism of the sensor is analyzed using the finite element method. The calculation results indicate a linear relationship between the output voltage and the force. The simulation results also demonstrate that the output voltage is linearly correlated with the applied force in the range of 1-30 N. Test results show that the sensor can sense the magnitude, frequency, and direction of the force as well as measure the duration of the force. The hardness of the object has a significant effect on the output voltage. Finally, the sensor is tested on a manipulator grasping an object to demonstrate its ability to sense the contact and sliding of the object.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.