The laminar location of the cell bodies and terminals of interareal connections determines the hierarchical structural organization of the cortex and has been intensively studied. However, we still have only a rudimentary understanding of the connectional principles of feedforward (FF) and feedback (FB) pathways. Quantitative analysis of retrograde tracers was used to extend the notion that the laminar distribution of neurons interconnecting visual areas provides an index of hierarchical distance (percentage of supragranular labeled neurons [SLN]). We show that: 1) SLN values constrain models of cortical hierarchy, revealing previously unsuspected areal relations; 2) SLN reflects the operation of a combinatorial distance rule acting differentially on sets of connections between areas; 3) Supragranular layers contain highly segregated bottom-up and top-down streams, both of which exhibit point-to-point connectivity. This contrasts with the infragranular layers, which contain diffuse bottom-up and top-down streams; 4) Cell filling of the parent neurons of FF and FB pathways provides further evidence of compartmentalization; 5) FF pathways have higher weights, cross fewer hierarchical levels, and are less numerous than FB pathways. Taken together, the present results suggest that cortical hierarchies are built from supra- and infragranular counterstreams. This compartmentalized dual counterstream organization allows point-to-point connectivity in both bottom-up and top-down directions.
This book uses the methodology of artificial intelligence to investigate the phenomena of visual motion perception: how the visual system constructs descriptions of the environment in terms of objects, their three-dimensional shape, and their motion through space, on the basis of the changing image that reaches the eye. The author has analyzed the computations performed in the course of visual motion analysis. Workable schemes able to perform certain tasks performed by the visual system have been constructed and used as vehicles for investigating the problems faced by the visual system and its methods for solving them. Two major problems are treated: first, the correspondence problem, which concerns the identification of image elements that represent the same object at different times, thereby maintaining the perceptual identity of the object in motion or in change. The second problem is the three-dimensional interpretation of the changing image once a correspondence has been established.The author's computational approach to visual theory makes the work unique, and it should be of interest to psychologists working in visual perception and readers interested in cognitive studies in general, as well as computer scientists interested in machine vision, theoretical neurophysiologists, and philosophers of science.
The human visual system analyzes shapes and objects in a series of stages in which stimulus features of increasing complexity are extracted and analyzed. The first stages use simple local features, and the image is subsequently represented in terms of larger and more complex features. These include features of intermediate complexity and partial object views. The nature and use of these higher-order representations remains an open question in the study of visual processing by the primate cortex. Here we show that intermediate complexity (IC) features are optimal for the basic visual task of classification. Moderately complex features are more informative for classification than very simple or very complex ones, and so they emerge naturally by the simple coding principle of information maximization with respect to a class of images. Our findings suggest a specific role for IC features in visual processing and a principle for their extraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.