Five preterm lambs were maintained in a physiologically stable condition for 1 week with significant growth and without clinically significant bacteremia or systemic inflammation. Although substantial further refinement is required, a life support platform based around ex vivo uterine environment therapy may provide an avenue to improve outcomes for extremely preterm infants.
BackgroundAntenatal steroids are standard of care for women who are at risk of preterm delivery; however, antenatal steroid dosing and formulation have not been evaluated adequately. The standard clinical 2-dose treatment with betamethasone-acetate+betamethasone-phosphate is more effective than 2 doses of betamethasone-phosphate for the induction of lung maturation in preterm fetal sheep. We hypothesized that the slowly released betamethasone-acetate component induces similar lung maturation to betamethasone-phosphate+betamethasone-acetate with decreased dose and fetal exposure.ObjectiveThe purpose of this study was to investigate pharmacokinetics and fetal lung maturation of antenatal betamethasone-acetate in preterm fetal sheep.Study DesignGroups of 10 singleton-pregnant ewes received 1 or 2 intramuscular doses 24 hours apart of 0.25 mg/kg/dose of betamethasone-phosphate+betamethasone-acetate (the standard of care dose) or 1 intramuscular dose of 0.5 mg/kg, 0.25 mg/kg, or 0.125 mg/kg of betamethasone-acetate. Fetuses were delivered 48 hours after the first injection at 122 days of gestation (80% of term) and ventilated for 30 minutes, with ventilator settings, compliance, vital signs, and blood gas measurements recorded every 10 minutes. After ventilation, we measured static lung pressure-volume curves and sampled the lungs for messenger RNA measurements. Other groups of pregnant ewes and fetuses were catheterized and treated with intramuscular injections of betamethasone-phosphate 0.125 mg/kg, betamethasone-acetate 0.125 mg/kg, or betamethasone-acetate 0.5 mg/kg. Maternal and fetal betamethasone concentrations in plasma were measured for 24 hours.ResultsAll betamethasone-treated groups had increased messenger RNA expression of surfactant proteins A, B, and C, ATP-binding cassette subfamily A member 3, and aquaporin-5 compared with control animals. Treatment with 1 dose of intramuscular betamethasone-acetate 0.125mg/kg improved dynamic and static lung compliance, gas exchange, and ventilation efficiency similarly to the standard treatment of 2 doses of 0.25 m/kg of betamethasone-acetate+betamethasone-phosphate. Betamethasone-acetate 0.125 mg/kg resulted in lower maternal and fetal peak plasma concentrations and decreased fetal exposure to betamethasone compared with betamethasone-phosphate 0.125 mg/kg.ConclusionA single dose of betamethasone-acetate results in similar fetal lung maturation as the 2-dose clinical formulation of betamethasone-phosphate+betamethasone-acetate with decreased fetal exposure to betamethasone. A lower dose of betamethasone-acetate may be an effective alternative to induce fetal lung maturation with less risk to the fetus.
Mechanical ventilation causes lung injury and systemic inflammatory responses in preterm sheep and is associated with bronchopulmonary dysplasia (BPD) in preterm infants. Budesonide added to surfactant decreased BPD by 20% in infants. We wanted to determine the effects of budesonide and surfactant on injury from high tidal volume (V) ventilation in preterm lambs. Ewes at 125 ± 1 days gestational age had fetal surgery to expose fetal head and chest with placental circulation intact. Lambs were randomized to 1) mechanical ventilation with escalating V to target 15 ml/kg by 15 min or 2) continuous positive airway pressure (CPAP) of 5 cmHO. After the 15-min intervention, lambs were given surfactant 100 mg/kg with saline, budesonide 0.25 mg/kg, or budesonide 1 mg/kg. The fetuses were returned to the uterus for 24 h and then delivered and ventilated for 30 min to assess lung function. Budesonide levels were low in lung and plasma. CPAP groups had improved oxygenation, ventilation, and decreased injury markers compared with fetal V lambs. Budesonide improved ventilation in CPAP lambs. Budesonide decreased lung weights and lung liquid and increased lung compliance and surfactant protein mRNA. Budesonide decreased proinflammatory and acute-phase responses in lung. Airway thickness increased in animals not receiving budesonide. Systemically, budesonide decreased monocyte chemoattractant protein-1 mRNA and preserved glycogen in liver. Results with 0.25 and 1 mg/kg budesonide were similar. We concluded that budesonide with surfactant matured the preterm lung and decreased the liver responses but did not improve lung function after high V injury in fetal sheep.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.