Summary[2 + 2]-Cycloadditions of cyclopentene and 2,3-dimethylbut-2-ene to furanone were investigated under continuous-flow conditions. Irradiations were conducted in a FEP-microcapillary module which was placed in a Rayonet chamber photoreactor equipped with low wattage UVC-lamps. Conversion rates and isolated yields were compared to analogue batch reactions in a quartz test tube. In all cases examined, the microcapillary reactor furnished faster conversions and improved product qualities.
: Acetone sensitized photoadditions of isopropanol to (5R)-5-menthyloxy-2-(5H)-furanone were investigated in two different microflow reactor systems. Setup A employed a commercially available glass reactor under a UVB-panel. Setup B utilized a FEP microcapillary wrapped tightly around a Pyrex cylinder with a single UVB fluorescent tube at its center. The reactions under flow conditions were subsequently compared to analogue reactions conducted in a batch chamber reactor. Overall, the microflow systems gave faster conversions and higher isolated yields. The flexible microcapillary setup, however, showed the best performance and promise in terms of future scale-up and reactor optimization.Flow photochemistry has recently extended the technology portfolio of synthetic organic photochemistry. Microreactors in particular offer some clear advantages over conventional batch systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.