Arabidopsis thaliana small GTP-binding proteins, AtRAB8s, associate with the endomembrane system and modulate tubulovesicular trafficking between compartments of the biosynthetic and endocytic pathways. There are 5 members in Arabidopsis, namely AtRAB8A-8E. Yeast two-hybrid assays, bimolecular fluorescence complementation (BiFC) assays, and glutathione-S-transferase (GST) pull-down assays showed that RAB8A, 8B, and 8D interacted with several membrane-associated reticulon-like (AtRTNLB) proteins in yeast, plant cells, and in vitro. Furthermore, RAB8A, 8B, and 8D proteins showed interactions with the Agrobacterium tumefaciens virulence protein, VirB2, a component of a Type IV secretion system (T4SS). A. tumefaciens uses a T4SS to transfer T-DNA and Virulence proteins to plants, which causes crown gall disease in plants. The Arabidopsis rab8A, rab8B, and rab8D single mutants showed decrease levels of Agrobacterium-mediated root and seedling transformation, while the RAB8A, 8B, and 8D overexpression (O/E) transgenic Arabidopsis plants were hypersusceptible to A. tumefaciens and Pseudomonas syringae infections. RAB8A-8E transcripts accumulated differently in roots, rosette leaves, cauline leaves, inflorescence, and flowers of wild-type plants. In summary, RAB8A, 8B, and 8D interacted with several RTNLB proteins and participated in A. tumefaciens and P. syringae infection processes.