The colloidal dispersion in a nonpolar medium is an essential material for electrophoretic displays (EPD) with low‐power consumption. A uniform‐sized superparamagnetic iron oxide nanoparticle (SPION) is a promising candidate for EPD, which exhibits tunable structural color by Bragg diffraction. In this study, the surface of SPION is charged in a nonpolar medium by inverse micelles of Solsperse‐17k, an oil‐soluble polymeric surfactant. A photonic ink of SPION dispersion exhibits simultaneous magnetochromism and electrochromism. The photonic ink is encapsulated via a complex coacervation process, in which double layers of gelatin/gum Arabic form a stable shell for µ‐capsule. The µ‐capsules show tunable structural colors, which depends upon the size of SPION in photonic ink. The increased surfactant content in photonic ink brings about a decrease in µ‐capsule size due to a reduced surface tension. A lowered gelatin concentration during coacervation results in a smaller µ‐capsule, which exhibits an electrical color tunability. Optical characterization using a confocal microscopy enables 3D visualization of the inner structure of µ‐capsules and the formation of particle chain structure of SPION in H‐field. The encapsulated photonic ink exhibits magnetochromism for 1 year, illuminating the long‐term stability of µ‐capsules developed in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.