We address an image segmentation method to detect concealed objects captured by passive millimeter wave (MMW) imaging. Passive MMW imaging can create interpretable imagery on the objects concealed under clothing, which gives the great advantage to the security system. In this paper, we propose the multi-level expectation maximization (EM) method to separate the concealed objects from the other area in the image. We apply the EM method to obtain a Gaussian mixture model (GMM) of the acquired image. In the experiments, we evaluate the performance by the average probability of error. We will show that the consecutive EM processes separates the object area more accurately than the conventional EM method.
This paper addresses occluded object reconstruction and recognition with computational integral imaging (II). Integral imaging acquires and reconstructs target information in the three-dimensional (3D) space. The reconstruction is performed by averaging the intensities of the corresponding pixels. The distance to the object is estimated by minimizing the sum of the standard deviation of the pixels. We adopt principal component analysis (PCA) to classify occluded objects in the reconstruction space. The Euclidean distance is employed as a metric for decision making. Experimental and simulation results show that occluded targets are successfully classified by the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.