Despite the remarkable advantages of luminescent solar concentrators (LSCs), their application has not been of interest in ultrahigh efficient photovoltaic modules such as multi-junctions and related two-terminal tandems due to challenging issues limiting the cell capability and impeding the output current. Here type of multi-junction LSC photovoltaics is presented that consists of transfer-printed arrays of InGaP/GaAs solar cells and strategically tailored luminescent waveguides. A coplanar waveguide with the non-self-aligned quantum dot luminophores enables simultaneous absorptions of the directly illuminated solar flux and the indirectly waveguided LSC flux, where cell deployment and luminophore spectrum are systematically tuned for balanced enhancement of the subcell photocurrents. Through systematic comparisons across various LSC configurations supported by both experimental and theoretical quantifications, the power conversion efficiency of flexible modules with InGaP/GaAs cell arrays is improved from 1.67% to 2.22% by the optimal LSC, where the module area is 14.4 times larger than the total cell area. The details of optical and mechanical studies provide a further comprehensive understanding of the suggested approach toward multi-junction LSC photovoltaics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.