The abnormal expression of breast cancer-specific gene 1 (BCSG1) in malignant mammary epithelial cells is highly associated with the development and progression of breast cancer. A series of in vitro and in vivo studies performed in our laboratory and others have demonstrated that BCSG1 expression significantly stimulates proliferation, invasion, and metastasis of breast cancer cells. However, currently little is known about how BCSG1 exerts its oncogenic functions. To elucidate the cellular mechanisms underlying the effects of BCSG1 in breast cancer cells, we used a yeast two-hybrid system to screen for proteins that could associate with BCSG1. Through this screening, we identified the mitotic checkpoint protein BubR1 as a novel binding partner of BCSG1. The specific association of BCSG1 with BubR1 in breast cancer cells was demonstrated by immunoprecipitation and GST pull-down assays. Intriguingly, experiments conducted in four different cell lines all showed that exogenous expressions of BCSG1 consistently reduce the cellular levels of the BubR1 protein without affecting BubR1 mRNA expression. The tendency of endogenous BCSG1 expression coinciding with lower BubR1 protein levels was also observed in seven out of eight breast cancer cell lines. We further showed that the reducing effect of BCSG1 on BubR1 protein expression could be prevented by treating BCSG1-transfected cells with MG-132, a selective 26S proteasome inhibitor, implying that the proteasome machinery may be involved in the BCSG1-induced reduction of the BubR1 protein. Accompanied with a reduction of BubR1 protein level, BCSG1 expression resulted in multinucleation of breast cancer cells upon treatment with spindle inhibitor nocodazole, indicating an impaired mitotic checkpoint. Taken together, our novel findings suggest that BCSG1 may accelerate the progression of breast cancer at least in part by compromising the mitotic checkpoint control through inactivation of BubR1.
We have reported that aldosterone is synthesized and cytochrome P450aldo mRNA exists in the vasculature. To clarify the pathophysiological role of vascular aldosterone in hypertension, we compared aldosterone production in the mesenteric arteries of stroke-prone spontaneously hypertensive rats (SHRSP) with that in Wistar-Kyoto rats (WKY). The expressions of mRNA of cytochrome P450aldo, mineralocorticoid receptor, and alpha 1, Na,K-ATPase in the mesenteric arteries were compared between the two groups. Aldosterone concentration in the perfusate of the vasculature was measured by radioimmunoassay after purification with high-performance liquid chromatography. Cytochrome P450aldo and mineralocorticoid receptor mRNA levels were quantified by Southern blot analysis of the products of reverse-transcribed polymerase chain reaction. Levels of alpha 1 Na,K-ATPase mRNA were measured by Northern blot analysis. Vascular aldosterone and cytochrome P450aldo mRNA levels of 2-week-old SHRSP were significantly increased compared with those of age-matched WKY. However, vascular aldosterone in 4- and 9-week-old SHRSP did not differ from that in age-matched WKY. Expression levels of mineralocorticoid receptor mRNA in the vasculature of 4- and 9-week-old SHRSP were significantly increased compared with those in age-matched WKY. Concentrations of vascular alpha 1 Na,K-ATPase mRNA of 2-, 4-, and 9-week-old SHRSP also were significantly higher than those in age-matched WKY. These results suggest that vascular aldosterone contributes to the pathophysiology of hypertension in SHRSP in the early stage.
The conversion of heterosubstituted methanes, such as methyl alcohol, dimethyl ether, methyl mercaptan, dimethyl sulfide, methylamines, and methyl halides, to ethylene and hydrocarbons derived thereof takes place over bifunctional acidic-basic-supported transition-metal oxide or oxyhalide catalysts, such as tungsten oxide supported on alumina, between 300 and 350 °C. The conversion of methyl alcohol starts with bimolecular dehydration to dimethyl ether followed by acid-catalyzed transmethylation giving trimethyloxonium ion (or related catalyst-bound methyloxonium ion). The trimethyloxonium ion then undergoes base-induced deprotonation forming a catalyst surface-bound methylenedimethyloxonium ylide. Intermolecular methylation of the ylide, indicated by experiments using singly 13C-labeled dimethyl ether, gives methylethyloxonium ion thus providing the crucial first C-C bond. No intramolecular Steven's-type rearrangement takes place, and methyl ethyl ether is not a significant intermediate as also shown in experiments comparing the products formed from reacting CD3OCH2CH3 under similar conditions. The ethyloxonium ion readily undergoes ß-elimination forming ethylene. Initialy formed ethylene subsequently can undergo further reaction with the ylide giving via cyclopropane propylene or it can undergo more complex alkylation/oligomerization/cracking reactions giving a mixture of alkenes, alkanes and via cyclization-dehydrogenation aromatics. The complexity of these processes was shown by reacting ethylene itself, as well as 13CH3OH and ethylene, under conditions of the condensation reaction. It is also necessary to differentiate initially formed ethylene via direct C¡ -* C2 conversion from that formed in secondary processes together with higher condensation products. The conversion of methyl mercaptan (dimethyl sulfide), methyl halides, and methylamines to ethylene follows similar onium ylide pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.