The emergence of a traffic jam is considered to be a dynamical phase transition in a physics point of view; traffic flow becomes unstable and changes phase into a traffic jam when the car density exceeds a critical value. In order to verify this view, we have been performing a series of circuit experiments. In our previous work (2008 New J. Phys. 10 033001), we demonstrated that a traffic jam emerges even in the absence of bottlenecks at a certain high density.In this study, we performed a larger indoor circuit experiment in the Nagoya Dome in which the positions of cars were observed using a high-resolution laser scanner. Over a series of sessions at various values of density, we found
Effects of a bottleneck in a linear trafficway is investigated using a simple cellular automaton model. Introducing a blockage site which transmit cars at some transmission probability into the rule-184 cellular automaton, we observe three different phases with increasing car concentration: Besides the free phase and the jam phase, which exist already in the pure rule-184 model, the mixed phase of these two appears at intermediate concentration with well-defined phase boundaries. This mixed phase, where cars pile up behind the blockage to form a jam region, is characterized by a constant flow. In the thermodynamic limit, we obtain the exact expressions for several characteristic quantities in terms of the car density and the transmission rate. These quantities depend strongly on the system size at the phase boundaries; We analyse these finite size effects based on the finite-size scaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.