Wild watermelon from the Botswana desert had an ability to survive under severe drought conditions by maintaining its water status (water content and water potential). In the analysis by two-dimensional electrophoresis of leaf proteins, seven spots were newly induced after watering stopped. One with the molecular mass of 40 kilodaltons of the spots was accumulated abundantly. The cDNA encoding for the protein was cloned based on its amino-terminal sequence and the amino acid sequence deduced from the determined nucleotide sequences of the cDNA exhibited homology to the enzymes belong to the ArgE/DapE/Acy1/Cpg2/YscS protein family (including acetylornithine deacetylase, carboxypeptidase and aminoacylase-1). This suggests that the protein is involved in the release of free amino acid by hydrolyzing a peptidic bond. As the drought stress progressed, citrulline became one of the major components in the total free amino acids. Eight days after withholding watering, although the lower leaves wilted significantly, the upper leaves still maintained their water status and the content of citrulline reached about 50% in the total free amino acids. The accumulation of citrulline during the drought stress in wild watermelon is an unique phenomenon in C3-plants. These results suggest that the drought tolerance of wild watermelon is related to (1) the maintenance of the water status and (2) a metabolic change to accumulate citrulline.
The binding energies of the ground states and several excited states related to single-particle and -hole states in nuclei around 16 O are calculated taking charge dependence into account. Effective interactions on the particle basis are constructed from modern charge-dependent nucleon-nucleon interactions and the Coulomb force within the framework of the unitary-model-operator approach. Single-particle (-hole) energies are obtained from the energy differences of the binding energies between a particle (hole) state in 17 O or 17 F ( 15 N or 15 O) and the ground state of 16 O. The resultant spin-orbit splittings are small for the hole state and large for the particle state in comparison with the experimental values though the differences between the experimental and calculated values are not very large. The charge dependence of the calculated single-particle energies for the ground states are in good agreement with the experimental values. Furthermore, the Thomas-Ehrman shift due to the Coulomb force for the 1s 1/2 states in 17 O and 17 F can be observed.
We describe the electrochemical detection of DNA methylation through the direct oxidation of both 5-methylcytosine (mC) and cytosine (C) in 5'-CG-3' sequence (CpG) oligonucleotides using a sputtered nanocarbon film electrode after digesting a longer CpG oligonucleotide with endonuclease P1. Direct electrochemistry of the longer CpG oligonucleotides was insufficient for obtaining the oxidation currents of these bases because the CG rich sequence inhibited the direct oxidation of each base in the longer CpG oligonucleotides, owing to the conformational structure and its very low diffusion coefficient. To detect C methylation with better quantitativity and sensitivity in the relatively long CpG oligonucleotides, we successfully used an endonuclease P1 to digest the target CpG oligonucleotide and yield an identical mononucleotide 2'-deoxyribonucleoside 5'-monophosphate (5'-dNMP). Compared with results obtained without P1 treatment, we achieved 4.4 times higher sensitivity and a wider concentration range for mC detection with a resolution capable of detecting a subtle methylated cytosine difference in the CpG oligonucleotides (60mer).
Low-momentum nucleon-nucleon interactions are derived within the framework of a unitarytransformation theory, starting with realistic nucleon-nucleon interactions. A cutoff momentum Λ is introduced to specify a border between the low-and high-momentum spaces. By the FaddeevYakubovsky calculations the low-momentum interactions are investigated with respect to the dependence of ground-state energies of 3 H and 4 He on the parameter Λ. It is found that we need the momentum cutoff parameter Λ ≥ 5 fm −1 in order to reproduce satisfactorily the exact values of the binding energies for 3 H and 4 He. The calculation with Λ = 2 fm −1 recommended by Bogner et al. leads to considerable overbinding at least for the few-nucleon systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.