We analyze the chiral phase structure of the Nambu-Jona-Lasinio model at finite temperature and density by using the functional renormalization group (FRG). The renormalization group (RG) equation for the fermionic effective potential V (σ; t) is given as a partial differential equation, where σ :=ψψ and t is a dimensionless RG scale. When the dynamical chiral symmetry breaking (DχSB) occurs at a certain scale t c , V (σ; t) has singularities originated from the phase transitions, and then one cannot follow RG flows after t c . In this study, we introduce the weak solution method to the RG equation in order to follow the RG flows after the DχSB and to evaluate the dynamical mass and the chiral condensate in low energy scales. It is shown that the weak solution of the RG equation correctly captures vacuum structures and critical phenomena within the pure fermionic system. We show the chiral phase diagram on temperature, chemical potential and the four-Fermi coupling constant.
Many phenomena with power laws have been observed in various fields of the natural and social sciences, and these power laws are often interpreted as the macro behaviors of systems that consist of micro units. In this paper, we review some basic mathematical mechanisms that are known to generate power laws. In particular, we focus on stochastic processes including the Yule process and the Simon process as well as some recent models. The main purpose of this paper is to explain the mathematical details of their mechanisms in a self-contained manner.
We propose quite a new method of analyzing the dynamical chiral symmetry breaking in gauge theories. Starting with the non-perturbative renormalization group equation for the Wilsonian fermion potential, we define the weak solution of it in order to mathematically authorize solutions with singularity. The weak solution is obtained uniquely and it successfully predicts the physically correct vacuum, chiral condensates, dynamical mass, through its auto-convexizing power for the effective potential. Thus it works perfectly even for the first order phase transition in the finite density QCD.
We analyze the dynamical chiral symmetry breaking (DχSB) in gauge theory with the nonperturbative renormalization group equation (NPRGE), which is a first order nonlinear partial differential equation (PDE). In case that the spontaneous chiral symmetry breaking occurs, the NPRGE encounters some non-analytic singularities at the finite critical scale even though the initial function is continuous and smooth. Therefore there is no usual solution of the PDE beyond the critical scale. In this paper, we newly introduce the notion of a weak solution which is the global solution of the weak NPRGE. We show how to evaluate the physical quantities with the weak solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.