Invasion by common carp (Cyprinus carpio) and red swamp crayfish (Procambarus clarkii) in shallow lakes have been followed by stable-state changes from a macrophyte-dominated clear water state to a phytoplankton-dominated turbid water state. Both invasive carp and crayfish are, therefore, possible drivers for catastrophic regime shifts. Despite these two species having been introduced into ecosystems world-wide, their relative significance on regime shifts remains largely unexplored. We compared the ecological impacts of carp and crayfish on submerged macrophytes, water quality, phytoplankton, nutrient dynamics, zooplankton and benthic macroinvertebrates by combining an enclosure experiment and a meta-analysis. The experiment was designed to examine how water quality and biological variables responded to increasing carp or crayfish biomass. We found that even at a low biomass, carp had large and positive impacts on suspended solids, phytoplankton and nutrients and negative impacts on benthic macroinvertebrates. In contrast, crayfish had a strong negative impact on submerged macrophytes. The impacts of crayfish on macrophytes were significantly greater than those of carp. The meta-analysis showed that both carp and crayfish have significant effects on submerged macrophytes, phytoplankton, nutrient dynamics and benthic macroinvertebrates, while zooplankton are affected by carp but not crayfish. It also indicated that crayfish have significantly greater impacts on macrophytes relative to carp. Overall, the meta-analysis largely supported the results of the experiment. Taken as a whole, our results show that both carp and crayfish have profound effects on community composition and ecosystem processes through combined consequences of bioturbation, excretion, consumption and non-consumptive destruction. However, key variables (e.g. macrophytes) relating to stable-state changes responded differently to increasing carp or crayfish biomass, indicating that they have differential ecosystem impacts.
In many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short-term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well-developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments.Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short-and long-term. We summarize the current understanding of storm-induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions.
Aim To explore the effects of the introduction of exotic and translocated species and possible future extirpation of native species on the functional diversity (FD) of freshwater fish assemblages. Location Japanese archipelago. Methods We examined spatio‐temporal changes in species richness, FD, functional richness (the number of trait‐based functional groups), and the functional group composition between historical and current fish assemblages for 27 eco‐regions, and compared the relative effects of the introduction of exotic and translocated species on FD. We also used a null model approach to determine the assembly patterns and the extent of functional redundancy. Finally, we determined the effect of the loss of endangered species on FD by comparing the observed losses with simulated random loss. Results Through the introductions of non‐native species, the species richness, FD and functional richness of the fish assemblages increased 2.4‐, 1.6‐ and 2.1‐fold, respectively. The functional group composition also changed largely through the additions of new functional groups. Exotic species had a significantly greater effect size than translocated species, but there were no differences in the overall net effects of exotic and translocated species. Null modelling approaches showed that the observed FD was higher than expected by chance (i.e. trait divergent) in both historical and current assemblages. There was also low functional redundancy. In our simulation, FD decreased in proportion to the loss of species, independent of whether the species were endangered. Main conclusions We demonstrated that both exotic and translocated species may change FD and functional group composition, which might have dramatic consequences for ecosystem processes. We suggest that the future extirpation of even a few native species can cause a substantial loss of FD. Our findings emphasize the need to improve conservation strategies based on species richness and conservation status, and to incorporate translocated species into targets of the management of non‐native species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.