Rationale: Fibroblasts are believed to be the major cells responsible for the production and maintenance of extracellular matrix. Alterations in fibroblast functional capacity, therefore, could play a role in the pathogenesis of pulmonary emphysema, which is characterized by inadequate maintenance of tissue structure. Objectives: To evaluate the hypothesis that deficient fibroblast repair characterizes cells obtained from individuals with chronic obstructive pulmonary disease (COPD) compared with control subjects. Methods: Fibroblasts were cultured from lung tissue obtained from individuals undergoing thoracotomy and were characterized in vitro. Measurements and Main Results: Fibroblasts from individuals with COPD, defined by reduced FEV 1 , manifested reduced chemotaxis toward fibronectin and reduced contraction of three-dimensional collagen gels, two bioassays associated with fibroblast repair function. At least two mechanisms appear to account for these differences. Prostaglandin E (PGE), a known inhibitor of fibroblast repair functions, was produced in increased amount by fibroblasts from subjects with COPD, which also expressed increased amounts of the receptors EP2 and EP4, both of which signal through cyclic AMP. Incubation of fibroblasts with indomethacin or with the PKA inhibitor KT-5720 partially restored COPD subject fibroblast function. In addition, fibroblasts from subjects with COPD produced more transforming growth factor (TGF)-b1, but manifested reduced response to TGF-b1. The functional alterations in fibroblasts correlated with both lung function assessed by FEV 1 and, for the data available, with severity of emphysema assessed by DL CO . Conclusions: Fibroblasts from individuals with COPD have reduced capability to sustain tissue repair, which suggests that this may be one mechanism that contributes to the development of emphysema.
Thymus- and activation-regulated chemokine (TARC; CCL17) is a lymphocyte-directed CC chemokine that specifically chemoattracts CC chemokine receptor 4-positive (CCR4+) Th2 cells. To establish the pathophysiological roles of TARC in vivo, we investigated here whether an mAb against TARC could inhibit the induction of asthmatic reaction in mice elicited by OVA. TARC was constitutively expressed in the lung and was up-regulated in allergic inflammation. The specific Ab against TARC attenuated OVA-induced airway eosinophilia and diminished the degree of airway hyperresponsiveness with a concomitant decrease in Th2 cytokine levels. Our results for the first time indicate that TARC is a pivotal chemokine for the development of Th2-dominated experimental allergen-induced asthma with eosinophilia and AHR. This study also represents the first success in controlling Th2 cytokine production in vivo by targeting a chemokine.
Erythromycin (EM) and its 14-member macrolide analogues have attracted attention for its effectiveness in a variety of airway diseases, including diffuse panbronchiolitis (DPB), sinobronchial syndrome, and chronic sinusitis. However, its mechanisms of action remain unelucidated. We evaluated the effects of several antibiotics on IL-8 expression by normal and transformed human bronchial epithelial cells, an important source of this potent chemokine involved in cell recruitment into the airways. EM and clarithromycin (CAM) uniquely suppressed mRNA levels as well as the release of IL-8 at the therapeutic and noncytotoxic concentrations (% inhibition of IL-8 protein release: 25.0 +/- 5.67% and 37.5 +/- 8.99%, respectively, at 10(-6) M). The other antimicrobes, including a 16-member macrolide josamycin, showed no effect. Bronchial epithelial cells from very peripheral airways as well as from main bronchi were obtained from patients with chronic airway inflammatory diseases, and EM and CAM inhibited IL-8 release from these cells. Among five patients who underwent bronchoscopy before and after macrolide treatment, four showed decreased levels of IL-8 expression in airway epithelium as assessed by reverse transcription and polymerase chain reaction. Our findings showed these 14-member macrolides had inhibitory effect on IL-8 expression in human bronchial epithelial cells, and this new mode of action may have relevance to their clinical effectiveness in airway diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.