In many cancers, high proliferation rates correlate with elevation of rRNA and tRNA levels, and nucleolar hypertrophy. However, the underlying mechanisms linking increased nucleolar transcription and tumorigenesis are only minimally understood. Here we show that IMP dehydrogenase-2 (IMPDH2), the rate-limiting enzyme for de novo guanine nucleotide biosynthesis, is overexpressed in the highly lethal brain cancer, glioblastoma (GBM). This leads to increased rRNA and tRNA synthesis, stabilization of the nucleolar GTP-binding protein, Nucleostemin, and enlarged, malformed nucleoli. Pharmacological or genetic inactivation of IMPDH2 in GBM reverses these effects and inhibits cell proliferation, whereas untransformed glia cells are unaffected by similar IMPDH2 perturbations. Impairment of IMPDH2 activity triggers nucleolar stress and growth arrest of GBM cells even in the absence of functional p53. Our results reveal that upregulation of IMPDH2 is a prerequisite for aberrant nucleolar function and increased anabolic processes in GBM, which constitutes a primary event in gliomagenesis.
Male penis is required to become erect during copulation. In the upper (dorsal) part of penis, the erectile tissue termed corpus cavernosum (CC) plays fundamental roles for erection by regulating the inner blood flow. When blood flows into the CC, the microvascular complex termed sinusoidal space is reported to expand during erection. A novel in vitro explant system to analyze the dynamic erectile responses during contraction/relaxation is established. The current data show regulatory contraction/relaxation processes induced by phenylephrine (PE) and nitric oxide (NO) donor mimicking dynamic erectile responses by in vitro CC explants. Two photon excitation microscopy (TPEM) observation shows the synchronous movement of sinusoidal space and the entire CC. By taking advantages of the CC explant system, tadalafil (cialis) was shown to increase sinusoidal relaxation. Histopathological changes have been generally reported associating with erection in several pathological conditions. Various stressed statuses have been suggested to occur in the erectile responses by previous studies. The current CC explant model enables to analyze such conditions through directly manipulating CC in the repeated contraction/relaxation processes. Expression of oxidative stress marker and contraction related genes, Hif1a, Gpx1, RhoA, Rock was significantly increased in such repeated contraction/relaxation. Altogether, it is suggested that the system is valuable for analyzing structural changes and physiological responses to several regulators in the field of penile medicine.
The voltage-sensing phosphatase (VSP) is a unique protein that shows voltage-dependent phosphoinositide phosphatase activity. Here we report that VSP is activated in mice sperm flagellum and generates a unique subcellular distribution pattern of PtdIns(4,5)P2. Sperm from VSP−/−mice show more Ca2+influx upon capacitation than VSP+/−mice and abnormal circular motion. VSP-deficient sperm showed enhanced activity of Slo3, a PtdIns(4,5)P2-sensitive K+channel, which selectively localizes to the principal piece of the flagellum and indirectly enhances Ca2+influx. Most interestingly, freeze-fracture electron microscopy analysis indicates that normal sperm have much less PtdIns(4,5)P2in the principal piece than in the midpiece of the flagellum, and this polarized PtdIns(4,5)P2distribution disappeared in VSP-deficient sperm. Thus, VSP appears to optimize PtdIns(4,5)P2distribution of the principal piece. These results imply that flagellar PtdIns(4,5)P2distribution plays important roles in ion channel regulation as well as sperm motility.
Phosphoinositides are a family of membrane lipids essential for many biological and pathological processes. Due to the existence of multiple phosphoinositide regioisomers and their low intracellular concentrations, profiling these lipids and linking a specific acyl variant to a change in biological state have been difficult. To enable the comprehensive analysis of phosphoinositide phosphorylation status and acyl chain identity, we develop PRMC-MS (Phosphoinositide Regioisomer Measurement by Chiral column chromatography and Mass Spectrometry). Using this method, we reveal a severe skewing in acyl chains in phosphoinositides in Pten-deficient prostate cancer tissues, extracellular mobilization of phosphoinositides upon expression of oncogenic PIK3CA, and a unique profile for exosomal phosphoinositides. Thus, our approach allows characterizing the dynamics of phosphoinositide acyl variants in intracellular and extracellular milieus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.