Summary KCNT1 mutations have been found in epilepsy of infancy with migrating focal seizures (EIMFS; also known as migrating partial seizures in infancy), autosomal dominant nocturnal frontal lobe epilepsy, and other types of early onset epileptic encephalopathies (EOEEs). We performed KCNT1‐targeted next‐generation sequencing (207 samples) and/or whole‐exome sequencing (229 samples) in a total of 362 patients with Ohtahara syndrome, West syndrome, EIMFS, or unclassified EOEEs. We identified nine heterozygous KCNT1 mutations in 11 patients: nine of 18 EIMFS cases (50%) in whom migrating foci were observed, one of 180 West syndrome cases (0.56%), and one of 66 unclassified EOEE cases (1.52%). KCNT1 mutations occurred de novo in 10 patients, and one was transmitted from the patient's mother who carried a somatic mosaic mutation. The mutations accumulated in transmembrane segment 5 (2/9, 22.2%) and regulators of K+ conductance domains (7/9, 77.8%). Five of nine mutations were recurrent. Onset ages ranged from the neonatal period (<1 month) in five patients (5/11, 45.5%) to 1–4 months in six patients (6/11, 54.5%). A generalized attenuation of background activity on electroencephalography was seen in six patients (6/11, 54.5%). Our study demonstrates that the phenotypic spectrum of de novo KCNT1 mutations is largely restricted to EIMFS.
Recent progress in genetic analysis reveals that a significant proportion of cryptogenic epileptic encephalopathies are single-gene disorders. Mutations in numerous genes for early-onset epileptic encephalopathies have been rapidly identified, including in SPTAN1, which encodes α-II spectrin. The aim of this review is to delineate SPTAN1 encephalopathy as a distinct clinical syndrome. To date, a total of seven epileptic patients with four different in-frame SPTAN1 mutations have been identified. The major clinical features of SPTAN1 mutations include epileptic encephalopathy with hypsarrhythmia, no visual attention, acquired microcephaly, spastic quadriplegia and severe intellectual disability. Brainstem and cerebellar atrophy and cerebral hypomyelination, as observed by magnetic resonance imaging, are specific hallmarks of this condition. A milder variant is characterized by generalized epilepsy with pontocerebellar atrophy. Only in-frame SPTAN1 mutations in the last two spectrin repeats in the C-terminal region lead to dominant negative effects and these specific phenotypes. The last two spectrin repeats are required for α/β spectrin heterodimer associations and the mutations can alter heterodimer formation between the two spectrins. From these data we suggest that SPTAN1 encephalopathy is a distinct clinical syndrome owing to specific SPTAN1 mutations. It is important that this syndrome is recognized by pediatric neurologists to enable proper diagnostic work-up for patients.
Rett syndrome (RTT) is a neurodevelopmental disorder mostly caused by MECP2 mutations. We identified a de novo WDR45 mutation, which caused a subtype of neurodegeneration with brain iron accumulation, in a patient showing clinically typical RTT. The mutation (c.830+1G>A) led to aberrant splicing in lymphoblastoid cells. Sequential brain magnetic resonance imaging demonstrated that iron deposition in the globus pallidus and the substantia nigra was observed as early as at 11 years of age. Because the patient showed four of the main RTT diagnostic criteria, WDR45 should be investigated in patients with RTT without MECP2 mutations.
Although there are many known Mendelian genes linked to epileptic or developmental and epileptic encephalopathy (EE/DEE), its genetic architecture is not fully explained. Here, we address this incompleteness by analyzing exomes of 743 EE/DEE cases and 2366 controls. We observe that damaging ultra-rare variants (dURVs) unique to an individual are significantly overrepresented in EE/DEE, both in known EE/DEE genes and the other non-EE/DEE genes. Importantly, enrichment of dURVs in non-EE/DEE genes is significant, even in the subset of cases with diagnostic dURVs ( P = 0.000215), suggesting oligogenic contribution of non-EE/DEE gene dURVs. Gene-based analysis identifies exome-wide significant ( P = 2.04 × 10 −6 ) enrichment of damaging de novo mutations in NF1 , a gene primarily linked to neurofibromatosis, in infantile spasm. Together with accumulating evidence for roles of oligogenic or modifier variants in severe neurodevelopmental disorders, our results highlight genetic complexity in EE/DEE, and indicate that EE/DEE is not an aggregate of simple Mendelian disorders.
Inherited GPI (glycosylphosphatidylinositol) deficiencies (IGDs), a recently defined group of diseases, show a broad spectrum of symptoms. Hyperphosphatasia mental retardation syndrome, also known as Mabry syndrome, is a type of IGDs. There are at least 26 genes involved in the biosynthesis and transport of GPI-anchored proteins; however, IGDs constitute a rare group of diseases, and correlations between the spectrum of symptoms and affected genes or the type of mutations have not been shown. Here, we report four newly identified and five previously described Japanese families with PIGO (phosphatidylinositol glycan anchor biosynthesis class O) deficiency. We show how the clinical severity of IGDs correlates with flow cytometric analysis of blood, functional analysis using a PIGO-deficient cell line, and the degree of hyperphosphatasia. The flow cytometric analysis and hyperphosphatasia are useful for IGD diagnosis, but the expression level of GPI-anchored proteins and the degree of hyperphosphatasia do not correlate, although functional studies do, with clinical severity. Compared with PIGA (phosphatidylinositol glycan anchor biosynthesis class A) deficiency, PIGO deficiency shows characteristic features, such as Hirschsprung disease, brachytelephalangy, and hyperphosphatasia. This report shows the precise spectrum of symptoms according to the severity of mutations and compares symptoms between different types of IGD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.