Nowadays, for numerous reasons, smart farming systems focus on the use of image processing technologies and 5G communications. In this paper, we propose a tracking system for individual cows using an ear tag visual analysis. By using ear tags, the farmers can track specific data for individual cows such as body condition score, genetic abnormalities, etc. Specifically, a four-digit identification number is used, so that a farm can accommodate up to 9999 cows. In our proposed system, we develop an individual cow tracker to provide effective management with real-time upgrading enforcement. For this purpose, head detection is first carried out to determine the cow’s position in its related camera view. The head detection process incorporates an object detector called You Only Look Once (YOLO) and is then followed by ear tag detection. The steps involved in ear tag recognition are (1) finding the four-digit area, (2) digit segmentation using an image processing technique, and (3) ear tag recognition using a convolutional neural network (CNN) classifier. Finally, a location searching system for an individual cow is established by entering the ID numbers through the application’s user interface. The proposed searching system was confirmed by performing real-time experiments at a feeding station on a farm at Hokkaido prefecture, Japan. In combination with our decision-making process, the proposed system achieved an accuracy of 100% for head detection, and 92.5% for ear tag digit recognition. The results of using our system are very promising in terms of effectiveness.
An international initiative called Education for All (EFA) aims to create an environment in which everyone in the world can get an education. Especially in developing countries, many children lack access to a quality education. Therefore, we propose an offline self-learning application to learn written English and basic calculation for primary level students. It can also be used as a supplement for teachers to make the learning environment more interactive and interesting. In our proposed system, handwritten characters or words written on tablets were saved as input images. Then, we performed character segmentation by using our proposed character segmentation methods. For the character recognition, the Convolutional Neural Network (CNN) was used for recognizing segmented characters. For building our own dataset, handwritten data were collected from primary level students in developing countries. The network model was trained on a high-end machine to reduce the workload on the Android tablet. Various types of classifiers (digit and special characters, uppercase letters, lowercase letters, etc.) were created in order to reduce the incorrect classification. According to our experimental results, the proposed system achieved 95.6% on the 1000 randomly selected words and 98.7% for each character.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.