A low-voltage (< 10 V), high-transmittance (> 80%), submillisecond-response, and hysteresis-free polymer-stabilized blue-phase liquid crystal (BPLC) device with vertical field switching (VFS) and oblique incident light are demonstrated experimentally. Unlike the commonly employed in-plane switching in which the electric field is primarily in lateral direction and not uniform spatially, the VFS mode has uniform longitudinal field. As a result, the operating voltage is reduced by ∼ 3.2 × which in turn helps to eliminate hysteresis. The VFS mode is a promising candidate for the emerging BPLC display and photonic devices.
Polarization-independent phase-only modulation of a polymer-dispersed liquid crystal ͑PDLC͒ is demonstrated. In the low voltage region, PDLC is translucent because of light scattering. Once the voltage exceeds a saturation level, PDLC is highly transparent and exhibits phase-only modulation capability. Although the remaining phase is not too large, it is still sufficient for making adaptive microdevices, such as microlens. A tunable-focus microlens for arrays using PDLC is demonstrated. This kind of microlens is scattering free, polarization independent, and has fast response time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.