Abstract. Allograft inflammatory factor (AIF)-1, originally cloned from a rat heart allograft under chronic rejection, is induced in various inflammatory conditions including atherosclerosis. Using mouse AIF-1 transfected macrophages and AIF-1 transgenic (AIF-1 Tg ) mice, we analyzed the influence of AIF-1 overexpression on macrophage phagocytosis and the development of atherosclerosis. The AIF-1 transfectants showed significantly increased phagocytosis of latex beads and E. coli BioParticles as well as incorporation of acetylated low-density lipoprotein (LDL) compared to those of vector controls. Concordant results were obtained with elicited peritoneal exudate cells from AIF-1 Tg mice. When AIF-1 Tg mice were crossbred with apolipoprotein E knockout mice (ApoE -/-), these AIF-1 Tg ApoE -/-mice developed significantly increased atherosclerotic lesions compared to ApoE -/-mice. These results suggest that enhanced AIF-1 expression leads to augmented incorporation of degenerated LDL by macrophages and promotes development of atherosclerotic vasculopathy.
Barley (Hordeum vulgare L.) is the fourth most-produced cereal in the world and is mainly utilized as animal feed and malts. Recently barley attracts considerable attentions as healthy food rich in dietary fiber. However, limited knowledge is available about developmental aspects of barley leaves. In the present study, we investigated barley narrow leafed dwarf1 (nld1) mutants, which exhibit thin leaves accompanied by short stature. Detailed histological analysis revealed that leaf marginal tissues, such as sawtooth hairs and sclerenchymatous cells, were lacked in nld1, suggesting that narrowed leaf of nld1 was attributable to the defective development of the marginal regions in the leaves. The defective marginal developments were also appeared in internodes and glumes in spikelets. Map-based cloning revealed that NLD1 encodes a WUSCHEL-RELATED HOMEOBOX 3 (WOX3), an ortholog of the maize NARROW SHEATH genes. In situ hybridization showed that NLD1 transcripts were localized in the marginal edges of leaf primordia from the initiating stage. From these results, we concluded that NLD1 plays pivotal role in the increase of organ width and in the development of marginal tissues in lateral organs in barley.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.