We report a five-fold luminance increase of green-light-emitting CdSe@ZnS quantum-dot LEDs (QLEDs) in response to treatment with a 2-ethoxyethanol solution of cesium carbonate (Cs2CO3). The maximum luminous yield of Cs2CO3-treated QLED is as high as 3.41 cd A−1 at 6.4 V. To elucidate device-performance improvement, we model measured currents as the sum of radiative and non-radiative recombination components, which are respectively represented by modified Shockley equations. Variations in model parameters show that a shift in Fermi level, reduction of barrier heights, and passivation of mid-gap defect states are the main results of Cs2CO3 treatment. In spite of a large luminance difference, light-extraction efficiency remains the same at 9% regardless of Cs2CO3 treatment because of the similarity in optical structures.
We report systematic efficiency improvement of green-emitting CdSe@ZnS quantum-dot LEDs with respect to the concentration of a 1,2-ethanedithiol solution used for in situ treatment.
The operation characteristics of nominal bilayer (BL) organic solar cells (OSCs), the active layers (ALs) of which consisted of sequentially casted bottom P3HT donor and top ICBA acceptor layers, resembled those of OSCs with bulk heterojunction (BHJ) ALs. Optical analysis and device simulations showed that such resemblance can be attributed to a similarity in the micromorphology of ALs; as‐deposited BL‐type ALs transformed spontaneously into BHJ‐type ALs. The inclusion of P3HT nanowires (NWs) in the donor layers resulted in different AL micromorphology and consequently a larger power conversion efficiency. Separate assessment of the exciton generation and charge–carrier transport and/or extraction showed that the contribution of P3HT NWs was more prominent in optical effects.
Transformation of sequentially casted P3HT and ICBA layers into a bulk heterojunction layer accounts for good agreement between measured and simulated J–V curves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.