In this study, we synthesized four acceptor–donor–acceptor type hole-transporting materials (HTMs) of SY1–SY4 for an HTMs/interfacial layer with carbazole as the core moiety and ester/amide as the acceptor unit. These HTMs contain 4-hexyloxyphenyl substituents on the carbazole N atom, with extended π-conjugation achieved through phenylene and thiophene units at the 3,6-positions of the carbazole. When using amide-based HTMs SY2 as a dopant-free HTM in a p–i–n perovskite solar cell (PSC), we achieved a power conversion efficiency (PCE) of 13.59% under AM 1.5G conditions (100 mW cm–2); this PCE was comparable with that obtained when using PEDOT:PSS as the HTM (12.33%). Amide-based SY2 and SY4 HTMs showed a larger perovskite grain than SY1 and SY3 because of the passivation of traps/defects at the grain boundaries and stronger interaction with the perovskite layer. In further investigation, we demonstrated highly efficient and stable PSCs when using the dopant-free p–i–n device structure indium tin oxide/NiO x /interfacial layer (SY-HTMs)/perovskite/PC61BM/BCP/Ag. The interfacial layer improved the PCEs and large grain size (micrometer scale) of the perovskite layer because of defect passivation and interface modification; the amide group exhibited a Lewis base adduct property coordinated to Ni and Pb ions in NiO x and perovskite, bifacial defect passivation and reduced the grain boundaries to improve the crystallinity of the perovskite. The amide-based SY2 exhibited the stronger interaction with the perovskite layer than that of ester-based SY1, which is related to the observations in X-ray absorption near edge structure (XANES). The best performance of the NiO x /SY2 device was characterized by a short-circuit current density (J sc) of 21.76 mA cm–2, an open-circuit voltage (V oc) of 1.102 V, and a fill factor of 79.1%, corresponding to an overall PCE of 18.96%. The stability test of the PCE of the NiO x /SY2 PSC device PCE showed a decay of only 5.01% after 168 h; it retained 92.01% of its original PCE after 1000 h in Ar atmosphere. Time-resolved photoluminescence spectra of the perovskite films suggested that the hole extraction capabilities of the NiO x /SY-HTMs were better than that of the bare NiO x . The superior film morphologies of the NiO x /SY-HTMs were responsible for the performances of their devices being comparable with those of bare NiO x -based PSCs. The photophysical properties of the HTMs were analyzed through time-dependent density functional theory with the B3LYP functional.
In this study, we synthesized three simple and inexpensive (34−120 USD/g) 3,3′-bicarbazole-based hole transporting materials (BC-HTMs; NP-BC, NBP-BC and PNP-BC) through a metal-free oxidative coupling, in excellent yields (≥95%). These bicarbazoles contain phenylene or biphenylene substituents on the carbazole N atom, with extended π-conjugation achieved through phenylene units at the 6,6′-positions of the bicarbazole. When using NBP-BC as a dopant-free HTM in a p−i−n perovskite solar cell (PSC), we achieved a power conversion efficiency (PCEs) of 12.22 ± 0.54% under AM 1.5G conditions (100 mW cm −2 ); this PCE was comparable to that obtained when using PEDOT:PSS as the HTM (11.23 ± 1.02%). BC-HTMs showed the large grain size (μm) of perovskite than PEDOT:PSS-based, due to defect passivation on indium tin oxide (ITO) substrate and good hydrophobicity. Furthermore, we realized highly efficient and stable PSCs when using the p−i−n device structure ITO/NiO x /NP-BC/perovskite/PC 61 BM/BCP/Ag. The bifacial defect passivation effect of the interfacial layer improved the grain size of the perovskite layer and also enhanced the performance; the best performance of the NiO x /NP-BC device was characterized by a short-circuit current density (J sc ) of 22.38 mA cm −2 , an open-circuit voltage (V oc ) of 1.09 V, and a fill factor (FF) of 79.9%, corresponding to an overall PCE of almost 20%. This device structure has competitive potential because its performance is comparable to that of the record-high-efficiency PSCs. Under an Ar atmosphere, the PCE of the NiO x /NP-BC PSC device decayed by only 4.55% after 168 h; it retained 90.80% of its original PCE after 1000 h. A morphological study revealed that the films of the BC-HTMs were indeed smooth and hydrophobic and that the perovskite films spin-coated upon them were uniform and featured large grains (micrometer scale). Time-resolved photoluminescence (TRPL) spectra of the perovskite films suggested that the hole extraction capabilities of the NiO x /BC-HTMs were better than that of the bare NiO x . The superior film morphologies of the NiO x /BC-HTMs were responsible for the performances of their devices being comparable to those of bare NiO x -based PSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.