To date, only one crystal structure has been reported in the literature for oxalyl dihydrazide [H(2)N.NH.CO.CO.NH.NH(2)]. In the present paper, we report the discovery of four new polymorphs of oxalyl dihydrazide, obtained by crystallization from solution under different conditions, including the use of different crystallization solvents. All polymorphs have the trans-trans-trans conformation of the N-N-C-C-N-N backbone, but the positions of the hydrogen atoms of the NH(2) groups relative to this backbone differ between the different polymorphs through variation of the torsion angle around each NH-NH(2) bond. The different polymorphs display a range of different hydrogen-bonding arrangements, constructed from different types of hydrogen-bonded array. The existence of several different potential hydrogen-bond donor and hydrogen-bond acceptor groups in the oxalyl dihydrazide molecule, together with the fact that the N-H bonds of the NH(2) groups adopt different orientations with respect to the molecular plane, leads to several possible geometric permutations for hydrogen-bonding arrangements in the solid state. It would not be surprising if even more polymorphs of oxalyl dihydrazide are discovered in the future.
Crystallisation of trithiocyanuric acid (TTCA) from various organic solvents that have hydrogen bonding capability (acetone, 2-butanone, dimethylformamide, dimethyl sulfoxide, methanol and acetonitrile) leads to the formation of co-crystals in which the solvent molecules are incorporated together with TTCA in the crystal structure. Structure determination by single-crystal X-ray diffraction reveals that these co-crystals can be classified into different groups depending upon the topological arrangement of the TTCA molecules in the crystal structure. Thus, three different types of single-tape arrangements of TTCA molecules and one type of double-tape arrangement of TTCA molecules are identified. In all co-crystals, hydrogen-bonding interactions are formed through the involvement of N-H bonds of TTCA molecules in these tapes and the other molecule in the co-crystal. Detailed rationalisation of the structural properties of these co-crystals is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.