The recent rapid development in perovskite solar cells (PSCs) has led to significant research interest due to their notable photovoltaic performance, currently exceeding 25% power conversion efficiency for small-area PSCs. The materials used to fabricate PSCs dominate the current photovoltaic market, especially with the rapid increase in efficiency and performance. The present work reviews recent developments in PSCs’ preparation and fabrication methods, the associated advantages and disadvantages, and methods for improving the efficiency of large-area perovskite films for commercial application. The work is structured in three parts. First is a brief overview of large-area PSCs, followed by a discussion of the preparation methods and methods to improve PSC efficiency, quality, and stability. Envisioned future perspectives on the synthesis and commercialization of large-area PSCs are discussed last. Most of the growth in commercial PSC applications is likely to be in building integrated photovoltaics and electric vehicle battery charging solutions. This review concludes that blade coating, slot-die coating, and ink-jet printing carry the highest potential for the scalable manufacture of large-area PSCs with moderate-to-high PCEs. More research and development are key to improving PSC stability and, in the long-term, closing the chasm in lifespan between PSCs and conventional photovoltaic cells.
Lead-free, bismuth-based perovskite solar cells (PSCs) are promising, non-toxic, and stable alternatives to lead-based PSCs, which are environmentally harmful and highly unstable under deprived air conditions. However, bismuth-based PSCs still suffer from low-power-conversion efficiency (PCE) due to their large bandgap and poor film morphology. Their poor film-forming ability is the greatest obstacle to Cs₃Bi₂I₉ progress in thin-film solar cell technology. This study synthesizes novel, lead-free perovskites with a small bandgap, excellent stability, and highly improved photovoltaic performance by integrating different amounts of potassium iodide (KI) into a perovskite precursor solution. KI incorporation improves the crystallinity of the perovskite, increases the grain size, and decreases the potential contact distribution, which is demonstrated by X-ray diffraction, electronic scanning microscopy, atomic force microscopy, and ultraviolet-visible spectroscopy. The Cs₃Bi₂I₉ PSC device with 2 vol. % incorporation of KI shows the highest PCE of 2.81% and Voc of 1.01 V as far as all the Bi-based cells fabricated for this study are concerned. The study demonstrates that incorporating KI in the Cs₃Bi₂I₉ perovskite layer highly stabilizes the resultant PSC device against humidity to the extent that it maintains 98% of the initial PCE after 90 days, which is suitable for solar cell applications. The devices also demonstrate greater resistance to airborne contaminants and high temperatures without encapsulation, opening up new possibilities for lead-free Cs₃Bi₂I₉ PSCs in future commercialization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.