We investigated the electroluminescence and relatively external quantum efficiency (EQE) of m-plane InGaN/GaN light emitting diodes (LEDs) emitting at 480 nm to elucidate the droop behaviors in nitride-based LEDs. With increasing the injection current density to 100 A/cm2, the m-plane LEDs exhibit only 13% efficiency droop, whereas conventional c-plane LEDs suffer from efficiency droop at very low injection current density and the EQE of c-plane LEDs decrease to as little as 50% of its maximum value. Our simulation models show that in m-plane LEDs the absence of polarization fields manifest not only the hole distribution more uniform among the wells but also the reduction in electron overflow out of electron blocking layer. These results suggest that the nonuniform distribution of holes and electron leakage current due to strong polarization fields are responsible for the relatively significant efficiency droop of conventional c-plane LEDs.
Nanolasers with an ultracompact footprint can provide high-intensity coherent light, which can be potentially applied to high-capacity signal processing, biosensing, and subwavelength imaging. Among various nanolasers, those with cavities surrounded by metals have been shown to have superior light emission properties because of the surface plasmon effect that provides enhanced field confinement capability and enables exotic light-matter interaction. In this study, we demonstrated a robust ultraviolet ZnO nanolaser that can operate at room temperature by using silver to dramatically shrink the mode volume. The nanolaser shows several distinct features including an extremely small mode volume, a large Purcell factor, and a slow group velocity, which ensures strong interaction with the exciton in the nanowire.
We report the demonstration of the continuous wave laser action on GaN-based vertical cavity surface emitting lasers at room temperature. The laser structure consists of a ten-pair Ta2O5/SiO2 distributed Bragg reflector (DBR), a 7λ-thick optical cavity, ten-pairs InGaN/GaN multiquantum wells with an AlGaN electron blocking layer, and a 29-pair AlN/GaN DBR. The laser has a threshold current of about 9.7 mA corresponding to the current density of about 12.4 kA/cm2 and a turn-on voltage about 4.3 V at 300 K. The lasing wavelength was 412 nm with a linewidth of about 0.5 nm. A spontaneous emission coupling efficiency factor of about 5×10−3 and the degree of polarization of about 55% were measured, respectively. The laser beam has a narrow divergence angle of about 8°.
We present a study of semi-polar (1101) InGaN-based light emitting diodes (LEDs) grown on patterned (001) Si substrates by atmospheric-pressure metal organic chemical vapor deposition. A transmission electron microscopy image of the semi-polar template shows that the threading dislocation density was decreased significantly. From electroluminescence measurement, semi-polar LEDs exhibit little blue-shift and low efficiency droop at a high injection current because the reduction of the polarization field not only made the band diagram smoother but also restricted electron overflow to the p-GaN layer as shown in simulations. These results indicate that semi-polar InGaN-based LEDs can possess a high radiative recombination rate and low efficiency droop at a high injection current.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.