Status epilepticus (SE), an unremitting seizure, is known to cause a variety of traumatic responses including delayed neuronal death and later cognitive decline. Although excitotoxicity has been implicated in this delayed process, the cellular mechanisms are unclear. Because our previous brain slice studies have shown that chemically induced epileptiform activity can lead to elevated astrocytic Ca 2ϩ signaling and because these signals are able to induce the release of the excitotoxic transmitter glutamate from these glia, we asked whether astrocytes are activated during status epilepticus and whether they contribute to delayed neuronal death in vivo. Using two-photon microscopy in vivo, we show that status epilepticus enhances astrocytic Ca 2ϩ signals for 3 d and that the period of elevated glial Ca 2ϩ signaling is correlated with the period of delayed neuronal death. To ask whether astrocytes contribute to delayed neuronal death, we first administered antagonists which inhibit gliotransmission: MPEP [2-methyl-6-(phenylethynyl)pyridine], a metabotropic glutamate receptor 5 antagonist that blocks astrocytic Ca 2ϩ signals in vivo, and ifenprodil, an NMDA receptor antagonist that reduces the actions of glial-derived glutamate. Administration of these antagonists after SE provided significant neuronal protection raising the potential for a glial contribution to neuronal death. To test this glial hypothesis directly, we loaded Ca 2ϩ chelators selectively into astrocytes after status epilepticus. We demonstrate that the selective attenuation of glial Ca 2ϩ signals leads to neuronal protection. These observations support neurotoxic roles for astrocytic gliotransmission in pathological conditions and identify this process as a novel therapeutic target.
The single channel properties of cloned P2X2 purinoceptors expressed in human embryonic kidney (HEK) 293 cells and Xenopus oocytes were studied in outside-out patches. The mean single channel current–voltage relationship exhibited inward rectification in symmetric solutions with a chord conductance of ∼30 pS at −100 mV in 145 mM NaCl. The channel open state exhibited fast flickering with significant power beyond 10 kHz. Conformational changes, not ionic blockade, appeared responsible for the flickering. The equilibrium constant of Na+ binding in the pore was ∼150 mM at 0 mV and voltage dependent. The binding site appeared to be ∼0.2 of the electrical distance from the extracellular surface. The mean channel current and the excess noise had the selectivity: K+ > Rb+ > Cs+ > Na+ > Li+. ATP increased the probability of being open (P o) to a maximum of 0.6 with an EC50 of 11.2 μM and a Hill coefficient of 2.3. Lowering extracellular pH enhanced the apparent affinity of the channel for ATP with a pKa of ∼7.9, but did not cause a proton block of the open channel. High pH slowed the rise time to steps of ATP without affecting the fall time. The mean single channel amplitude was independent of pH, but the excess noise increased with decreasing pH. Kinetic analysis showed that ATP shortened the mean closed time but did not affect the mean open time. Maximum likelihood kinetic fitting of idealized single channel currents at different ATP concentrations produced a model with four sequential closed states (three binding steps) branching to two open states that converged on a final closed state. The ATP association rates increased with the sequential binding of ATP showing that the binding sites are not independent, but positively cooperative. Partially liganded channels do not appear to open. The predicted P o vs. ATP concentration closely matches the single channel current dose–response curve.
Astrocytes are specialized and the most abundant cell type in the central nervous system (CNS). They play important roles in the physiology of the brain. Astrocytes are also critically involved in many CNS disorders including focal ischemic stroke, the leading cause of brain injury and death in patients. One of the prominent pathological features of a focal ischemic stroke is reactive astrogliosis and glial scar formation. Reactive astrogliosis is accompanied with changes in morphology, proliferation and gene expression in the reactive astrocytes. This study provides an overview of the most recent advances in astrocytic Ca2+ signaling, spatial and temporal dynamics of the morphology and proliferation of reactive astrocytes as well as signaling pathways involved in the reactive astrogliosis after ischemic stroke based on results from experimental studies performed in various animal models. This review also discusses the therapeutic potential of reactive astrocytes in a focal ischemic stroke. As reactive astrocytes exhibit high plasticity, we suggest that modulation of local reactive astrocytes is a promising strategy for cell-based stroke therapy.
Voltage-gated ion channels have at least two classes of moving parts, voltage sensors that respond to changes in the transmembrane potential and gates that create or deny permeant ions access to the conduction pathway. To explore the coupling between voltage sensors and gates, we have systematically immobilized each using a bifunctional photoactivatable cross-linker, benzophenone-4-carboxamidocysteine methanethiosulfonate, that can be tethered to cysteines introduced into the channel protein by mutagenesis. To validate the method, we first tested it on the inactivation gate of the sodium channel. The benzophenone-labeled inactivation gate of the sodium channel can be trapped selectively either in an open or closed state by ultraviolet irradiation at either a hyperpolarized or depolarized voltage, respectively. To verify that ultraviolet light can immobilize S4 segments, we examined its relative effects on ionic and gating currents in Shaker potassium channels, labeled at residue 359 at the extracellular end of the S4 segment. As predicted by the tetrameric stoichiometry of these potassium channels, ultraviolet irradiation reduces ionic current by approximately the fourth power of the gating current reduction, suggesting little cooperativity between the movements of individual S4 segments. Photocross-linking occurs preferably at hyperpolarized voltages after labeling residue 359, suggesting that depolarization moves the benzophenone adduct out of a restricted environment. Immobilization of the S4 segment of the second domain of sodium channels prevents channels from opening. By contrast, photocross-linking the S4 segment of the fourth domain of the sodium channel has effects on both activation and inactivation. Our results indicate that specific voltage sensors of the sodium channel play unique roles in gating, and suggest that movement of one voltage sensor, the S4 segment of domain 4, is at least a two-step process, each step coupled to a different gate.
BackgroundFollowing the onset of focal ischemic stroke, the brain experiences a series of alterations including infarct evolvement, cellular proliferation in the penumbra, and behavioral deficits. However, systematic study on the temporal and spatial dependence of these alterations has not been provided.ResultsUsing multiple approaches, we assessed stroke outcomes by measuring brain injury, dynamic cellular and glial proliferation, and functional deficits at different times up to two weeks after photothrombosis (PT)-induced ischemic stroke in adult mice. Results from magnetic resonance imaging (MRI) and Nissl staining showed a maximal infarction, and brain edema and swelling 1–3 days after PT. The rate of Bromodeoxyuridine (Brdu)-labeled proliferating cell generation is spatiotemporal dependent in the penumbra, with the highest rate in post ischemic days 3–4, and higher rate of proliferation in the region immediate to the ischemic core than in the distant region. Similar time-dependent generation of proliferating GFAP+ astrocytes and Iba1+ microglia/macrophage were observed in the penumbra. Using behavioral tests, we showed that PT resulted in the largest functional deficits during post ischemic days 2–4.ConclusionOur study demonstrated that first a few days is a critical period that causes brain expansion, cellular proliferation and behavioral deficits in photothrombosis-induced ischemic model, and proliferating astrocytes only have a small contribution to the pools of proliferating cells and reactive astrocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.