The NF-κB and interferon antiviral signaling pathways play pivotal roles in inflammatory and innate immune responses. The LUBAC ubiquitin ligase complex, composed of the HOIP, HOIL-1L, and SHARPIN subunits, activates the canonical NF-κB pathway through Met1-linked linear ubiquitination. We identified small-molecule chemical inhibitors of LUBAC, HOIPIN-1 and HOIPIN-8. Here we show that HOIPINs down-regulate not only the proinflammatory cytokine-induced canonical NF-κB pathway, but also various pathogen-associated molecular pattern-induced antiviral pathways. Structural analyses indicated that HOIPINs inhibit the RING-HECT-hybrid reaction in HOIP by modifying the active Cys885, and residues in the Cterminal LDD domain, such as Arg935 and Asp936, facilitate the binding of HOIPINs to LUBAC. HOIPINs effectively induce cell death in activated B cell-like diffuse large B cell lymphoma cells, and alleviate imiquimod-induced psoriasis in model mice. These results reveal the molecular and cellular bases of LUBAC inhibition by HOIPINs, and demonstrate their potential therapeutic uses.
A novel series of RORγ inhibitors was identified starting with the HTS hit 1. After SAR investigation based on a prospective consideration of two drug-likeness metrics, ligand efficiency (LE) and fraction of sp 3 carbon atoms (Fsp 3 ), significant improvement of metabolic stability as well as reduction of CYP inhibition was observed, which finally led to discovery of a selective and orally efficacious RORγ inhibitor 3z.KEYWORDS: Th17, immunological diseases, nuclear receptor, RORγ, ligand efficiency (LE), fraction of sp 3 carbon atoms (Fsp 3 )T wo decades after the discovery of Th1 and Th2 cells, a third subset of T helper cells called Th17 cells was identified and has drawn considerable attention since it was suggested to play a central role in the pathogenesis of various autoimmune diseases such as psoriasis and rheumatoid arthritis. 1,2 Among several regulatory pathways in which Th17 development and function are involved, the one regulated by the nuclear receptor RORγ appears to be crucial for controlling the differentiation and function. 3 Given its validity as an emerging drug target for treatment of immunological diseases, many research groups have made significant efforts in the discovery of RORγ modulators in recent years. 4−19 Since starting our RORγ inhibitor program in 2003, we discovered several structurally diverse hits after a HTS campaign. 20 From these hits we selected compound 1 as the first hit-to-lead series for optimization. In addition to being reasonably potent against RORγ (hLUC EC 50 = 1.7 μM, FRET EC 50 = 0.85 μM), compound 1 also demonstrated >20-fold selectivity over five nuclear receptors (hRORα, hFXR, hRXRα, hPR, and hPPARγ) and was structurally unique in comparison to other nuclear receptor modulators. 16−18 However, this compound has several drawbacks. For example, the microsomal stability in liver microsomes is poor with only 18% remaining at 10 min in human liver microsomes. It also has a modest time-dependent human CYP3A4 inhibition (IC 50 = 4 μM) probably due to some reactive metabolites formed by the oxidation of 1. The ligand efficiency is only 0.25, far below the literature consensus value (0.30) for a drug-like molecule. 21 The concept of ligand efficiency (LE) was first introduced by Kuntz 22 and is widely accepted as a reliable index of drug-like qualities. 23 Improvement of LE inevitably results in lower molecular weight and higher potency. We reasoned that a strategy of increasing LE and lowering the lipophilicity should therefore significantly improve the drug-like properties of compound 1. In addition, compound 1 is a rather flat molecule with a fraction of saturated carbons (Fsp 3 ) of 0.24. Fsp 3 is a newer index representing drug-likeness. 24 Lovering et al. pointed out that a decrease of Fsp 3 value would result in an increased incidence of CYP inhibition. 25 The desired Fsp 3 value is over 0.47 according to the literature. 24 Thus, we considered that improvement of the poor Fsp 3 value of compound 1 would be a rational way to overcome the CYP inhibi...
By using carbophilic Lewis acids, In(OTf)3, NiCl2, and AuCl(PPh3)/AgNTf2, a concise and efficient synthesis of 1,3-disubstituted 1,2-dihydroisoquinolines has been achieved via tandem nucleophilic addition and cyclization of 2-(1-alkynyl)arylaldimines. Addition of proton sources such as water, CF3CH2OH, and 2,6-di-tert-butyl-4-methoxyphenol was essential for the Lewis acid-catalyzed tandem reactions with organometallic reagents. By switching these catalysts, various types of nucleophiles such as allylstannanes, silyl enol ethers, alkenylboronic acids, and active methylene compounds could be introduced at the C1 position of 1,2-dihydroisoquinolines in this transformation. Furthermore, this method proved to be applicable to the synthesis of 1H-isochromene derivatives via the same tandem reaction of 2-(1-alkynyl)arylaldehydes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.