Enhancement of the Seebeck coefficient (S ) without reducing the electrical conductivity (sigma) is essential to realize practical thermoelectric materials exhibiting a dimensionless figure of merit (ZT=S2 x sigma x T x kappa-1) exceeding 2, where T is the absolute temperature and kappa is the thermal conductivity. Here, we demonstrate that a high-density two-dimensional electron gas (2DEG) confined within a unit cell layer thickness in SrTiO(3) yields unusually large |S|, approximately five times larger than that of SrTiO(3) bulks, while maintaining a high sigma2DEG. In the best case, we observe |S|=850 microV K-1 and sigma2DEG=1.4 x 10(3) S cm-1. In addition, by using the kappa of bulk single-crystal SrTiO(3) at room temperature, we estimate ZT approximately 2.4 for the 2DEG, corresponding to ZT approximately 0.24 for a complete device having the 2DEG as the active region. The present approach using a 2DEG provides a new route to realize practical thermoelectric materials without the use of toxic heavy elements.
Electron and thermal transport properties, i.e., electrical conductivity, carrier concentration, Hall mobility, Seebeck coefficient, thermal conductivity, of heavily La- or Nb-doped SrTiO3 (STO) bulk single crystals were measured at high temperatures, (300–1050K) to clarify the influence of doping upon the thermoelectric performance of STO. The temperature dependence of Hall mobility and Seebeck coefficient changed at ∼750K in all samples because the dominant mechanism for carrier scattering changed with increasing temperature from coupled scattering by polar optical phonons and acoustic phonons to mere acoustic phonon scattering. The density-of-states effective mass of Nb-doped STO, which was estimated from the carrier concentration and Seebeck coefficient, was larger than that of La-doped STO. Thermal conductivity of the samples, which was similar to that of undoped STO single crystal, decreased proportionally to T−1, indicating that the phonon conduction takes place predominantly and the electronic contribution to thermal conductivity is negligible.
Carrier concentration dependence of the thermoelectric figure of merit, ZT of SrTiO3 at high-temperature (1000 K) is clarified using heavily Nb-doped SrTiO3 epitaxial films, which were grown on insulating (100)-oriented LaAlO3 single-crystalline substrates by a pulsed-laser deposition method. Carrier concentration, Hall mobility, Seebeck coefficient, and thermal conductivity of Nb-doped SrTiO3 epitaxial films were experimentally evaluated at 1000 K with an aid of theoretical analysis. ZT of Nb-doped SrTiO3 increases with Nb concentration and it reaches ∼0.37 (20% Nb doped), which is the largest value among n-type oxide semiconductors ever reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.