The next generation power modules using SiC-MOSFETs have been developed for over ten years. From our successful results, we have released SiC power modules which have been used in railway vehicles, industrial machines and home appliances, etc. Low on-resistance 3.3 kV SiC-MOSFETs have been realized by JFET doping and they demonstrated a loss reduction of 55% in a traction inverter compared to a conventional system. In the case of a 1.2 kV MOSFET, a 1 cm 2 die verified that it can control a large current of over 600 A. For home appliances, we reduce the trade-off between the threshold voltage and channel mobility by a new gate oxide process. High threshold voltage SiC-MOSFETs having a low onresistance contribute to the low cost installation of SiC-MOSFETs into air conditioners and achieved a loss reduction of 45% in DC converters. For further reduction of conduction loss, we investigated new structures and technologies. Trench SiC-MOSFETs having a bottom p-well verify lower on-resistance and a larger SCSOA than those of planar MOSFETs. The optimization of the dopant concentration in the drift layer and a reduction of wafer thickness verified the reduction of on-resistance. They are expected to contribute to a lower power loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.