The National Institute of Science and Technology Policy (NISTEP) has conducted foresight activities for decades. In recent years, the speed of social change has increased and the complexity in politics and economics has also increased. As such, it has become difficult to look forward appropriate in a timely manner using only conventional methods, and thus the development of various methods is encouraged. Conversely, the formation of a sustainable society faces many difficulties on the international front and many goals for global issues have been set. However, efforts and results for sustainable development are not necessarily desirable. In this study, we examined whether we could effectively solve social problems by combining the development of a foresight approach with Sustainable Development Goals (SDGs). First, we reviewed the concepts of sustainable development. Next, we examined the target of SDGs appropriately to convert our foresight activities. Finally, we propose a future public platform (FPP) for scenario planning in foresight. As a result, we found the importance of considering the SDGs in foresight. We also examined the concept of sustainable development, considering how to integrate the SDGs into foresight, and propose the FPP with SDGs. This FPP effectively involves five SDG targets and appears to be highly executable. Though the system of FPP has a certain difficulty, we could exchange information among experts who are studying SDGs and foresight. Thus, as a case study of connections between foresight and SDGs, it would be helpful for other countries.
A flow injection analytical method is proposed for the spectrophotometric determination of trace amounts of bromide based on its catalytic effect on the oxidation of Pyrocatechol Violet by hydrogen peroxide in strongly acidic solution. Bromide in water samples can be determined at a sampling rate of 45 h-' with 500 µl sample injections. The detection limit is 10 µg l-' and the calibration graph for bromide is linear over the range of 10-600 µg -'. The relative standard deviations are 2.5% for 20µg L' bromide and 1.4% for 105 µg I-' bromide. The procedure is applied successfully to the determination of bromide in natural waters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.