We propose a new theory beyond the standard model of elementary-particle physics. Employing the concept of a quantized spacetime, our theory demonstrates that the zero-point energy of the vacuum alone is sufficient to create all the fields, including gravity, the static electromagnetic field, and the weak and strong interactions. No serious undetermined parameters are assumed. Furthermore, the relations between the forces at the quantum-mechanics level is made clear. Using these relations, we quantize Einstein’s gravitational equation and explain the Dark Energy in our universe. Beginning with the zero-point energy of the vacuum, and after quantizing Newtonian gravity, we combine the energies of a static electromagnetic field and gravity in a quantum spacetime. Applying these results to the Einstein gravity equation, we substitute the energy density derived from the zero-point energy in addition to redefining differentials in a quantized spacetime. We thus derive the quantized Einstein gravitational equation without assuming the existence of macroscopic masses. This also explains the existence of the Dark Energy in the universe. For the weak interaction, by considering plane-wave electron and the zero-point energy, we obtain a wavefunction that represents a β collapse. In this process, from a different point of view than Weinberg-Salam theory, we derive the masses of the W and Z bosons and the neutrino, and we calculate the radius of the neutron. For the strong interaction, we previously reported an analytical theory for calculating the mass of a proton by considering a specific linear attractive potential obtained from the zero-point energy, which agrees well with the measurements. In the present study, we calculate the strong interaction between two nucleons, i.e., the mass of the pi-meson. The resulting calculated quantities agree with the measurements, which verifies our proposed theory.
We previously reported new superconductivity produced by an electrostatic field and a diffusion current in a semiconductor without refrigeration. In particular, the superconductivity was investigated theoretically and confirmed experimentally. Here, we determine that the derived superconducting quantum state can be reproduced in a capacitor. When circuits are formed with this new-type capacitor and diodes, a magnetic field is applied to the diodes’ depletion layer. The depletion layer is biased because of the conversion from the magnetic-field energy to electric-field energy, resulting in the diodes’ spontaneously emitting a current. Thus, the new-type capacitor is charged using no other energy source. This new phenomenon is described theoretically with assistance of initial experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.