Both VKORC1 and CYP2C9 polymorphisms contribute to inter-population difference in warfarin doses among the three populations, but their contribution to intra-population variability may differ within each population.
In Japan in October 2016, the Pharmaceuticals and Medical Devices Agency (PMDA) began to receive electronic data in new drug applications (NDAs). These electronic data are useful to conduct regulatory assessment of sponsors’ submissions and contribute to the PMDA's research. In this article, we summarize the number of submissions of quantitative modeling and simulation (M&S) documents in NDAs in Japan, and we describe our current thinking and activities about quantitative M&S in PMDA.
This publication summarizes the proceedings of day 3 of a 3-day workshop on "Dissolution and Translational Modeling Strategies Enabling Patient-Centric Product Development." Specifically, this publication discusses the current approaches in building clinical relevance into drug product development for solid oral dosage forms, along with challenges that both industry and regulatory agencies are facing in setting clinically relevant drug product specifications (CRDPS) as presented at the workshop. The concept of clinical relevance is a multidisciplinary effort which implies an understanding of the relationship between the critical quality attributes (CQAs) and their impact on predetermined clinical outcomes. Developing this level of understanding, in many cases, requires introducing deliberate but meaningful variations into the critical material attributes (CMAs) and critical process parameters (CPPs) to establish a relationship between the resulting in vitro dissolution/release profiles and in vivo PK performance, a surrogate for clinical outcomes. Alternatively, with the intention of improving the efficiency of the drug product development process by limiting the burden of conducting in vivo studies, this understanding can be either built, or at least enhanced, through in silico efforts, such as IVIVC and physiologically based pharmacokinetic (PBPK) absorption modeling and simulation (M&S). These approaches enable dissolution testing to establish safe boundaries and reject drug product batches falling outside of the established safe range (e.g., due to inadequate in vivo performance) enabling the method to become clinically relevant. Ultimately, these efforts contribute towards patient-centric drug product development and allow regulatory flexibility throughout the lifecycle of the drug product.
Clinical observations of patients with chronic diseases are often restricted in terms of duration. Therefore, obtaining a quantitative and comprehensive understanding of the chronology of chronic diseases is challenging, because of the inability to precisely estimate the patient's disease stage at the time point of observation. We developed a novel method to reconstitute long-term disease progression from temporally fragmented data by extending the nonlinear mixed-effects model to incorporate the estimation of "disease time" of each subject. Application of this method to sporadic Alzheimer's disease successfully depicted disease progression over 20 years. The covariate analysis revealed earlier onset of amyloid-β accumulation in male and female apolipoprotein E ε4 homozygotes, whereas disease progression was remarkably slower in female ε3 homozygotes compared with female ε4 carriers and males. Simulation of a clinical trial suggests patient recruitment using the information of precise disease time of each patient will decrease the sample size required for clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.