The AMMONIUM TRANSPORTER (AMT) family comprises six isoforms in Arabidopsis thaliana. Here, we describe the complete functional organization of root-expressed AMTs for high-affinity ammonium uptake. High-affinity influx of 15 N-labeled ammonium in two transposon-tagged amt1;2 lines was reduced by 18 to 26% compared with wild-type plants. Enrichment of the AMT1;2 protein in the plasma membrane and localization of AMT1;2 promoter activity in the endodermis and root cortex indicated that AMT1;2 mediates the uptake of ammonium entering the root via the apoplasmic transport route. An amt1;1 amt1;2 amt1;3 amt2;1 quadruple mutant (qko) showed severe growth depression under ammonium supply and maintained only 5 to 10% of wild-type high-affinity ammonium uptake capacity. Transcriptional upregulation of AMT1;5 in nitrogen-deficient rhizodermal and root hair cells and the ability of AMT1;5 to transport ammonium in yeast suggested that AMT1;5 accounts for the remaining uptake capacity in qko. Triple and quadruple amt insertion lines revealed in vivo ammonium substrate affinities of 50, 234, 61, and 4.5 mM for AMT1;1, AMT1;2, AMT1;3, and AMT1;5, respectively, but no ammonium influx activity for AMT2;1. These data suggest that two principle means of achieving effective ammonium uptake in Arabidopsis roots are the spatial arrangement of AMT1-type ammonium transporters and the distribution of their transport capacities at different substrate affinities.
Morphological plasticity of root systems is critically important for plant survival because it allows plants to optimize their capacity to take up water and nutrients from the soil environment. Here we show that a signaling module composed of nitrogen (N)-responsive CLE (CLAVATA3/ESR-related) peptides and the CLAVATA1 (CLV1) leucine-rich repeat receptor-like kinase is expressed in the root vasculature in Arabidopsis thaliana and plays a crucial role in regulating the expansion of the root system under N-deficient conditions. CLE1, -3, -4, and -7 were induced by N deficiency in roots, predominantly expressed in root pericycle cells, and their overexpression repressed the growth of lateral root primordia and their emergence from the primary root. In contrast, clv1 mutants showed progressive outgrowth of lateral root primordia into lateral roots under N-deficient conditions. The clv1 phenotype was reverted by introducing a CLV1 promoter-driven CLV1:GFP construct producing CLV1:GFP fusion proteins in phloem companion cells of roots. The overaccumulation of CLE2, -3, -4, and -7 in clv1 mutants suggested the amplitude of the CLE peptide signals being feedback-regulated by CLV1. When CLE3 was overexpressed under its own promoter in wild-type plants, the length of lateral roots was negatively correlated with increasing CLE3 mRNA levels; however, this inhibitory action of CLE3 was abrogated in the clv1 mutant background. Our findings identify the N-responsive CLE-CLV1 signaling module as an essential mechanism restrictively controlling the expansion of the lateral root system in N-deficient environments.root morphology | root system architecture | nitrogen signaling
Recent studies have revealed the presence of intracellular lipid droplets in wide variety of species. In mammalian cells, there exist proteins specifically localize in lipid droplets. However, the protein profile in the droplet remains yet to be clarified. In this study, a fraction enriched with lipid droplets was isolated from a human hepatocyte cell line HuH7 using sucrose density gradient centrifugation, and 17 major proteins in the fraction were identified using nano LC-MS/MS techniques. Adipose differentiation-related protein (ADRP) was the most abundant protein in the fraction. The secondary abundant proteins were identified to be acyl-CoA synthetase 3 (ACS3) and 17beta-hydroxysteroid dehydrogenase 11 (17betaHSD11). Included in the identified proteins were five lipid-metabolizing enzymes as well as two lipid droplet-specific proteins. When HuH7 cell lysate was fractionated by a density gradient, most of 17betaHSD11 was found in the droplet-enriched fraction. In immunocytochemical analysis, 17betaHSD11 showed ring-shaped images which overlapped with those for ADRP. These results suggest that a specific set of proteins is enriched in the lipid droplet-enriched fraction and that 17betaHSD11 localizes specifically in the fraction.
SummaryIn Arabidopsis four root-expressed AMT genes encode functional ammonium transporters, which raises the question of their role in primary ammonium uptake. After pre-culturing under nitrogen-deficiency conditions, we quantified the influx of 15 N-labeled ammonium in T-DNA insertion lines and observed that the loss of either AMT1;1 or AMT1;3 led to a decrease in the high-affinity ammonium influx of approximately 30%. Under nitrogen-sufficient conditions the ammonium influx was lower in Columbia glabra compared with Wassilewskija (WS), and AMT1;1 did not contribute significantly to the ammonium influx in Col-gl. Ectopic expression of AMT1;3 under the control of a 35S promoter in either of the insertion lines amt1;3-1 or amt1;1-1 increased the ammonium influx above the level of their corresponding wild types. In transgenic lines carrying AMT-promoter-GFP constructs, the promoter activities of AMT1;1 and AMT1;3 were both upregulated under nitrogen-deficiency conditions and were localized to the rhizodermis, including root hairs. AMT gene-GFP fusions that were stably expressed under the control of their own promoters were localized to the plasma membrane. The double insertion line amt1;1-1 amt1;3-1 showed a decreased sensitivity to the toxic ammonium analog methylammonium and a decrease in the ammonium influx of up to 70% relative to wildtype plants. These results suggest an additive contribution of AMT1;1 and AMT1;3 to the overall ammonium uptake capacity in Arabidopsis roots under nitrogen-deficiency conditions.
Root development is strongly affected by the plant's nutritional status and the external availability of nutrients. Employing split-root systems, we show here that local ammonium supply to Arabidopsis thaliana plants increases lateral root initiation and higher-order lateral root branching, whereas the elongation of lateral roots is stimulated mainly by nitrate. Ammoniumstimulated lateral root number or density decreased after ammonium or Gln supply to a separate root fraction and did not correlate with cumulative uptake of 15 N-labeled ammonium, suggesting that lateral root branching was not purely due to a nutritional effect but most likely is a response to a sensing event. Ammonium-induced lateral root branching was almost absent in a quadruple AMMONIUM TRANSPORTER (qko, the amt1;1 amt1;2 amt1;3 amt2;1 mutant) insertion line and significantly lower in the amt1;3-1 mutant than in the wild type. Reconstitution of AMT1;3 expression in the amt1;3-1 or in the qko background restored higher-order lateral root development. By contrast, AMT1;1, which shares similar transport properties with AMT1;3, did not confer significant higher-order lateral root proliferation. These results show that ammonium is complementary to nitrate in shaping lateral root development and that stimulation of lateral root branching by ammonium occurs in an AMT1;3-dependent manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.