Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New Background As the meningeally derived, fibroblast-rich, mass-produced by intrathecal morphine infusion is not produced by all opiates, but reduced by mast cell stabilizers, the authors hypothesized a role for meningeal mast cell/fibroblast activation. Using the guinea pig, the authors asked: (1) Are intrathecal morphine masses blocked by opiate antagonism?; (2) Do opioid agonists not producing mast cell degranulation or fibroblast activation produce masses?; and (3) Do masses covary with Mas-related G protein-coupled receptor signaling thought to mediate mast cell degranulation? Methods In adult male guinea pigs (N = 66), lumbar intrathecal catheters connected to osmotic minipumps (14 days; 0.5 µl/h) were placed to deliver saline or equianalgesic concentrations of morphine sulfate (33 nmol/h), 2’,6’-dimethyl tyrosine-(Tyr-D-Arg-Phe-Lys-NH2) (abbreviated as DMT-DALDA; 10 pmol/h; μ agonist) or PZM21 (27 nmol/h; biased μ agonist). A second pump delivered subcutaneous naltrexone (25 µg/h) in some animals. After 14 to 16 days, animals were anesthetized and perfusion-fixed. Drug effects on degranulation of human cultured mast cells, mouse embryonic fibroblast activation/migration/collagen formation, and Mas-related G protein-coupled receptor activation (PRESTO-Tango assays) were determined. Results Intrathecal infusion of morphine, DMT-DALDA or PZM21, but not saline, comparably increased thermal thresholds for 7 days. Spinal masses proximal to catheter tip, composed of fibroblast/collagen type I (median: interquartile range, 0 to 4 scale), were produced by morphine (2.3: 2.0 to 3.5) and morphine plus naltrexone (2.5: 1.4 to 3.1), but not vehicle (1.2: 1.1 to 1.5), DMT-DALDA (1.0: 0.6 to 1.3), or PZM21 (0.5: 0.4 to 0.8). Morphine in a naloxone-insensitive fashion, but not PZM21 or DMT-DALDA, resulted in mast cell degranulation and fibroblast proliferation/collagen formation. Morphine-induced fibroblast proliferation, as mast cell degranulation, is blocked by cromolyn. Mas-related G protein-coupled receptor activation was produced by morphine and TAN67 (∂-opioid agonist), but not by PZM21, TRV130 (mu biased ligand), or DMT-DALDA. Conclusions Opiates that activate Mas-related G protein-coupled receptor will degranulate mast cells, activate fibroblasts, and result in intrathecal mass formation. Results suggest a mechanistically rational path forward to safer intrathecal opioid therapeutics.
Objectives DMT‐DALDA (H‐Dmt‐D‐Arg‐Phe‐Lys‐NH2; Dmt = 2′,6′‐dimethyltyrosine) is a selective mu opioid agonist. We sought to characterize efficacy, tolerance, dependence and side‐effect profile when given by continuous intrathecal infusion. Materials and Methods Adult male Sprague Dawley rats were prepared with chronic intrathecal catheters and osmotic mini‐pumps to deliver vehicle (saline), DMT‐DALDA or morphine. Hind paw thermal escape latencies were assessed. In addition, effects upon intraplantar formalin‐evoked flinching and withdrawal after 14 days of infusion were examined. The flare response after intradermal delivery was examined in the canine model. Results 1) Intrathecal infusion of 0.3 to 30 pmol/μL/hour of DMT‐DALDA or 37.5 nmol/μL/hour of morphine more than 7 or 14 days resulted in a dose‐dependent increase in thermal escape latency. The maximum antinociceptive effect was observed between 1 and 4 days after start of infusion with preserved cornea, blink, placing and stepping. By days 12 to 14, response latencies were below baseline. 2) On days 2 to 4 of DMT‐DALDA infusion, the pan opioid receptor antagonist naloxone (Nx), but not the delta‐preferring antagonist naltrindole, antagonized the analgesic effects. 3) Assessment of formalin flinching on day 1 following IT DMT‐DALDA Infusion showed significant analgesia in phases 1 and 2. On day 6 of infusion there was minimal effect, while on day 13, there was an increase in flinching. 4) On days 7 and 14 of infusion Nx resulted in prominent withdrawal signs indicating dependence and withdrawal. 5) Intradermal morphine and DMT‐DALDA both yield a naltrexone‐insensitive, cromolyn‐sensitive flare in the canine model at similar concentrations. Conclusions These data suggest that DMT‐DALDA is a potent, spinally active agonist with a propensity to produce tolerance dependence and mast cell degranulation. While it was equiactive to morphine in producing mast cell degranulation, it was >1000 fold more potent in producing analgesia, suggesting a possible lower risk in producing a spinal mass at equianalgesic doses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.