Summary1. The use of both linear and generalized linear mixed-effects models (LMMs and GLMMs) has become popular not only in social and medical sciences, but also in biological sciences, especially in the field of ecology and evolution. Information criteria, such as Akaike Information Criterion (AIC), are usually presented as model comparison tools for mixed-effects models. 2. The presentation of 'variance explained' (R 2 ) as a relevant summarizing statistic of mixed-effects models, however, is rare, even though R 2 is routinely reported for linear models (LMs) and also generalized linear models (GLMs). R 2 has the extremely useful property of providing an absolute value for the goodness-of-fit of a model, which cannot be given by the information criteria. As a summary statistic that describes the amount of variance explained, R 2 can also be a quantity of biological interest. 3.One reason for the under-appreciation of R 2 for mixed-effects models lies in the fact that R 2 can be defined in a number of ways. Furthermore, most definitions of R 2 for mixed-effects have theoretical problems (e.g. decreased or negative R 2 values in larger models) and/or their use is hindered by practical difficulties (e.g. implementation). 4.Here, we make a case for the importance of reporting R 2 for mixed-effects models. We first provide the common definitions of R 2 for LMs and GLMs and discuss the key problems associated with calculating R 2 for mixed-effects models. We then recommend a general and simple method for calculating two types of R 2 (marginal and conditional R 2 ) for both LMMs and GLMMs, which are less susceptible to common problems. 5. This method is illustrated by examples and can be widely employed by researchers in any fields of research, regardless of software packages used for fitting mixed-effects models. The proposed method has the potential to facilitate the presentation of R 2 for a wide range of circumstances.
Null hypothesis significance testing (NHST) is the dominant statistical approach in biology, although it has many, frequently unappreciated, problems. Most importantly, NHST does not provide us with two crucial pieces of information: (1) the magnitude of an effect of interest, and (2) the precision of the estimate of the magnitude of that effect. All biologists should be ultimately interested in biological importance, which may be assessed using the magnitude of an effect, but not its statistical significance. Therefore, we advocate presentation of measures of the magnitude of effects (i.e. effect size statistics) and their confidence intervals (CIs) in all biological journals. Combined use of an effect size and its CIs enables one to assess the relationships within data more effectively than the use of p values, regardless of statistical significance. In addition, routine presentation of effect sizes will encourage researchers to view their results in the context of previous research and facilitate the incorporation of results into future meta-analysis, which has been increasingly used as the standard method of quantitative review in biology. In this article, we extensively discuss two dimensionless (and thus standardised) classes of effect size statistics: d statistics (standardised mean difference) and r statistics (correlation coefficient), because these can be calculated from almost all study designs and also because their calculations are essential for meta-analysis. However, our focus on these standardised effect size statistics does not mean unstandardised effect size statistics (e.g. mean difference and regression coefficient) are less important. We provide potential solutions for four main technical problems researchers may encounter when calculating effect size and CIs: (1) when covariates exist, (2) when bias in estimating effect size is possible, (3) when data have non-normal error structure and/or variances, and (4) when data are non-independent. Although interpretations of effect sizes are often difficult, we provide some pointers to help researchers. This paper serves both as a beginner's instruction manual and a stimulus for changing statistical practice for the better in the biological sciences.
Repeatability (more precisely the common measure of repeatability, the intra-class correlation coefficient, ICC) is an important index for quantifying the accuracy of measurements and the constancy of phenotypes. It is the proportion of phenotypic variation that can be attributed to between-subject (or between-group) variation. As a consequence, the non-repeatable fraction of phenotypic variation is the sum of measurement error and phenotypic flexibility. There are several ways to estimate repeatability for Gaussian data, but there are no formal agreements on how repeatability should be calculated for non-Gaussian data (e.g. binary, proportion and count data). In addition to point estimates, appropriate uncertainty estimates (standard errors and confidence intervals) and statistical significance for repeatability estimates are required regardless of the types of data. We review the methods for calculating repeatability and the associated statistics for Gaussian and non-Gaussian data. For Gaussian data, we present three common approaches for estimating repeatability: correlation-based, analysis of variance (ANOVA)-based and linear mixed-effects model (LMM)-based methods, while for non-Gaussian data, we focus on generalised linear mixed-effects models (GLMM) that allow the estimation of repeatability on the original and on the underlying latent scale. We also address a number of methods for calculating standard errors, confidence intervals and statistical significance; the most accurate and recommended methods are parametric bootstrapping, randomisation tests and Bayesian approaches. We advocate the use of LMM- and GLMM-based approaches mainly because of the ease with which confounding variables can be controlled for. Furthermore, we compare two types of repeatability (ordinary repeatability and extrapolated repeatability) in relation to narrow-sense heritability. This review serves as a collection of guidelines and recommendations for biologists to calculate repeatability and heritability from both Gaussian and non-Gaussian data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.