The Fas ligand (FasL), a member of the tumor necrosis factor family, induces apoptosis in Fas-bearing cells. The membrane-bound human FasL was found to be converted to a soluble form (sFasL) by the action of a matrix metalloproteinase-like enzyme. Two neutralizing monoclonal anti-human FasL antibodies were identified, and an enzyme-linked immunosorbent assay (ELISA) for sFasL in human sera was established. Sera from healthy persons did not contain a detectable level of sFasL, whereas those from patients with large granular lymphocytic (LGL) leukemia and natural killer (NK) cell lymphoma did. These malignant cells constitutively expressed FasL, whereas peripheral NK cells from healthy persons expressed FasL only on activation. These results suggested that the systemic tissue damage seen in most patients with LGL leukemia and NK-type lymphoma is due to sFasL produced by these malignant cells. Neutralizing anti-FasL antibodies or matrix metalloproteinase inhibitors may be of use in modulating such tissue damage.
Abnormalities of chromosome 1q21 are common in B cell malignancies, but their target genes are largely unknown. By cloning the breakpoints of a (1;14) (q21;q32) chromosomal translocation in a myeloma cell line, we have identified two novel genes, IRTA1 and IRTA2, encoding cell surface receptors homologous to the Fc and inhibitory receptor families. Both genes are selectively expressed in mature B cells: IRTA1 in marginal zone B cells and IRTA2 in centrocytes, marginal zone B cells, and immunoblasts. As a result of the t(1;14), IRTA1 is fused to the immunoglobulin Calpha domain to produce a chimeric IRTA1/Calpha fusion protein. In tumor cell lines with 1q21 abnormalities, IRTA2 expression is deregulated. Thus, IRTA1 and IRTA2 are novel immunoreceptors implicated in B cell development and lymphomagenesis.
Hemophagocytic lymphohistiocytosis (HLH) is caused by the hyperactivation of T cells and macrophages. The clinical characteristics associated with this disease result from overproduction of Th1 cytokines including interferon-γ (IFN-γ), interleukin-2 (IL-2), and tumor necrosis factor-α (TNF-α). In this study, we analyzed the production of IL-12 and IL-4, which determine Th1 and Th2 response, respectively, and IL-10, which antagonizes Th1 cytokines, in 11 patients with HLH. IL-12 was detected in plasma in all patients (mean peak value, 30.0 ± 5.0 pg/mL), while IFN-γ was massively produced in nine patients (mean peak value, 79.2 ± 112.0 U/mL). IL-4 was not detected in any of the patients. Plasma IL10 levels were elevated in all patients (mean peak value, 2,698.0 ± 3,535.0 pg/mL). There was a positive correlation between the levels of IFN-γ and IL-10 (P < .01). The plasma concentrations of these cytokines were initially high, before decreasing after the acute phase. However, the decrease in IL-10 levels was slower than that of IFN-γ. Although the concentration of IL-12 was high at the acute phase, in some patients, a peak in the level was delayed until the chronic phase. Thus, in HLH, production of cytokines that promote development of Th1 cells appears to be predominant over that for Th2 cell development. Overproduction of IL-10 was also observed indicating that a mechanism suppressing hyperactivation of Th1 cells and monocytes/macrophages functions in patients with this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.