BackgroundA goal of searching risk factors for chronic kidney disease (CKD) is to halt progressing to end-stage renal disease (ESRD) by potential intervention. To predict the future ESRD, 30% decline in estimated GFR over 2 years was examined in comparison with other time-dependent predictors.MethodsCKD patients who had measurement of serum creatinine at baseline and 2 years were enrolled (n = 701) and followed up to 6 years. Time-dependent parameters were calculated as time-averaged values over 2 years by a trapezoidal rule. Risk factors affecting the incidence of ESRD were investigated by the extended Cox proportional hazard model with baseline dataset and 2-year time-averaged dataset. Predictive significance of 30% decline in estimated GFR over 2 years for ESRD was analyzed.ResultsFor predicting ESRD, baseline estimated GFR and proteinuria were the most influential risk factors either with the baseline dataset or the 2-year time-averaged dataset. Using the 2-year time-averaged dataset, 30% decline in estimated GFR over 2 years by itself showed the highest HR of 31.6 for ESRD whereas addition of baseline estimated GFR, proteinuria, serum albumin and hemoglobin yielded a better model by a multivariate Cox regression model. This novel surrogate was mostly associated with time-averaged proteinuria over 2 years with the cut-off of ~1 g/g creatinine.ConclusionThese results suggest that decline in estimated GFR and proteinuria are the risk factors while serum albumin and hemoglobin are the protective factors by the time-to-event analysis. Future incidence of ESRD is best predicted by 30% decline in eGFR over 2 years that can be modified by intervention to proteinuria, hemoglobin, uric acid, phosphorus, blood pressure and use of renin-angiotensin system inhibitors in the follow-up of 2 years.
Acetaminophen overdose can lead to severe liver and kidney failure; however, the risk of therapeutic doses in healthy individuals causing acute kidney injury (AKI) is less clear. We herein describe the cases of two young adults with renal biopsy-proven acute tubular necrosis under a therapeutic dose of acetaminophen. The first patient exhibited mild reversible renal insufficiency, whereas, in the second case, the patient demonstrated a slightly increased serum creatinine level and enlarged kidneys and the administration of contrast media and antibiotics may have worsened the renal dysfunction, leading to the need for temporal hemodialysis. Physicians should be aware of the risk of acetaminophen causing AKI and avoid administering other nephrotoxic agents in such cases.
Pendrin is a Cl−/HCO3− exchanger selectively present in the intercalated cells of the kidney. Although experimental studies have demonstrated that pendrin regulates blood pressure downstream of the renin-angiotensin-aldosterone system, its role in human hypertension remains unclear. Here, we analyzed the quantitative changes in pendrin in urinary extracellular vesicles (uEVs) isolated from a total of 30 patients with primary aldosteronism (PA) and from a rat model of aldosterone excess. Western blot analysis revealed that pendrin is present in dimeric and monomeric forms in uEVs in humans and rats. In a rodent model that received continuous infusion of aldosterone with or without concomitant administration of the selective mineralocorticoid receptor (MR) antagonist esaxerenone, pendrin levels in uEVs, as well as those of epithelial Na+ channel (ENaC) and Na-Cl-cotransporter (NCC), were highly correlated with renal abundance. In patients with PA, pendrin levels in uEVs were reduced by 49% from baseline by adrenalectomy or pharmacological MR blockade. Correlation analysis revealed that the magnitude of pendrin reduction after treatment significantly correlated with the baseline aldosterone-renin ratio (ARR). Finally, a cross-sectional analysis of patients with PA confirmed a significant correlation between the ARR and pendrin levels in uEVs. These data are consistent with experimental studies showing the role of pendrin in aldosterone excess and suggest that pendrin abundance is attenuated by therapeutic interventions in human PA. Our study also indicates that pendrin analysis in uEVs, along with other proteins, can be useful to understand the pathophysiology of hypertensive disorders.
Although hyperuricemia is shown to accelerate chronic kidney disease, the mechanisms remain unclear. Accumulating studies also indicate that uric acid has both pro- and antioxidant properties. We postulated that hyperuricemia impairs the function of glomerular podocytes, resulting in albuminuria. Hyperuricemic model was induced by oral administration of 2% oxonic acid, a uricase inhibitor. Oxonic acid caused a twofold increase in serum uric acid levels at 8 weeks when compared to control animals. Hyperuricemia in this model was associated with the increase in blood pressure and the wall-thickening of afferent arterioles as well as arcuate arteries. Notably, hyperuricemic rats showed significant albuminuria, and the podocyte injury marker, desmin, was upregulated in the glomeruli. Conversely, podocin, the key component of podocyte slit diaphragm, was downregulated. Structural analysis using transmission electron microscopy confirmed podocyte injury in this model. We found that urinary 8-hydroxy-2′-deoxyguanosine levels were significantly increased and correlated with albuminuria and podocytopathy. Interestingly, although the superoxide dismutase mimetic, tempol, ameliorated the vascular changes and the hypertension, it failed to reduce albuminuria, suggesting that vascular remodeling and podocyte injury in this model are mediated through different mechanisms. In conclusion, vasculopathy and podocytopathy may distinctly contribute to the kidney injury in a hyperuricemic state.
Multiple myeloma presents with various kidney injuries, including cast nephropathy, light chain deposition disease, and amyloidosis. Cast nephropathy is the most common form and mostly consists of monoclonal immunoglobulin light chains with Tamm-Horsfall protein. Immunoglobulin light chain (AL) amyloidosis may affect all compartments of the kidney, but it is rare in the tubuli. We herein present a rare case with rapid progression of renal failure caused by the co-occurrence of intratubular amyloidosis and cast nephropathy due to multiple myeloma. Our case suggests unique amyloidogenic light chain cast, which can form amyloid fibrils under specific tubular fluid conditions, and illustrates the complicated light chain pathophysiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.