Flow-Induced Motions (FIM) are an issue for floating offshore structures, such as multi-column platforms, as the phenomenon can decrease the fatigue life of the mooring, riser, and cable systems. The new concept of Floating Offshore Wind Turbines (FOWT) have a multi-column design that may be subjected to FIM. In the past, FIM was studied mainly for Oil & Gas platforms installed in deep waters. However, the FIM phenomenon of FOWT has been insufficiently explored. To rectify this, model tests were performed for the Semisubmersible (SS) Floating System design developed for the DeepCwind project (OC4 Phase II). This paper will investigate the presence of FIM and show its importance in the design process of FOWT. Three different incidence angles of the current were tested, namely 0, 90, and 180 deg. For each heading, thirty reduced velocities were tested, across the range 8,000<Re<70,000. The results showed amplitudes in the transverse direction of around 70% of the diameter of the platform column, which is similar to those observed for deep-draft (DD) SS with circular columns. Note that these amplitude values are larger for a floater with a circular column, than for a platform with square columns. The results showed that as FIM occurred for this specific FOWT SS, its effect has to be considered in the mooring system and electric cable design.
Coupled rotor-floater response analysis is essentially important for the design of Rotor Nacelle Assembly (RNA) and floating support structure of Floating Offshore Wind Turbine (FOWT). The authors have developed an analysis code UTWind for analysis of the coupled structural response. Blades and floater are modeled as frame structure with beam elements. Lumped mass model is use for mooring. Aerodynamic load on blade is calculated by Blade Element Momentum Theory (BEM), and hydrodynamic load is calculated by Hooft’s method, and Morison equation was modified to be applicable to cylindrical element with cross section with two axes of lines symmetry. The equations of motion of rotor, floater and mooring are solved in time domain by weak coupling algorithm. The numerical results by the code were compared with responses measured by experiment in wave and wind-and-wave coexistence field with/without blade pitch control and showed good agreement. Response by negative damping was reproduced by the code and showed good agreement with experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.