In order to prove osteocytic osteolysis in vivo, human parathyroid hormone (hPTH (1-34), 749 ng/h), or only solvent of the same volume, was continuously administered to 8-month-old rats by an infusion pump for 4 weeks, and then structural changes in osteocytes in the cortical bones of the tibiae were analyzed morphometrically, histologically, and histochemically. Based on contact microradiography (CMR) observations, the osteocyte lacunae in the PTH group tended to be enlarged, compared with those of the control, while the average lacuna area was 137.0 microm2 in the PTH group versus 93.9 microm2 in the control, suggesting evidence of osteocytic osteolysis. Acid phosphatase enzyme histochemical localization was observed in some osteocytes in the PTH group; therefore, lysosome systems may participate in the osteolytic mechanisms. On histological samples stained with hematoxylin-eosin or toluidine blue, the lacunae of the controls were surrounded by narrow areas of matrices both positive for hematoxylin and metachromatic for toluidine blue, while belt-like areas positive for hematoxylin were observed around the PTH-group lacunae. These findings suggested that, after osteocytic osteolysis, regenerated bone matrices may be added to the walls of osteocytes that possess enlarged lacunae.
Osteoblasts, originating from mesenchymal stem cells, play a pivotal role in bone formation and mineralization. Several transcription factors including runt-related transcription factor 2 (Runx2) have been reported to be essential for osteoblast differentiation, whereas the cytoplasmic signal transduction pathways controlling the differentiation process have not been fully elucidated. AMP-activated protein kinase (AMPK) is a serine-threonine kinase generally regarded as a key regulator of cellular energy homeostasis, polarity, and division. Recent lines of evidence have indicated that the activity of the catalytic alpha subunit of AMPK is regulated through its phosphorylation by upstream AMPK kinases (AMPKKs) including LKB1. Here, we explored the role of AMPK in osteoblast differentiation using in vitro culture models. Phosphorylation of AMPKalpha was significantly decreased during osteoblastic differentiation in both primary osteoblasts and MC3T3-E1, a mouse osteoblastic cell line. Conversely, the terminal differentiation of primary osteoblasts and MC3T3-E1 cells, represented by matrix mineralization, was significantly inhibited by glucose restriction and stimulation with metformin, both of which are known activators of AMPK. Matrix mineralization of MC3T3-E1 cells was also inhibited by the forced expression of a constitutively active form of AMPKalpha. Metformin significantly inhibited gene expression of Runx2 along with osteoblast differentiation markers including osteocalcin (Ocn), bone sialo protein (Bsp), and osteopontin (Opn). Thus, our present data indicate that differentiation of osteoblasts is functionally associated with decreased AMPK activity.
Various chemotherapeutic agents used in patients with hematopoietic malignancy cause serious side effects, including myelosuppression and immunosuppression. Immunosuppression makes patients more susceptible to infection, resulting in an increased risk of infectious complications, including the development of severe septicemia that may be life-threatening. It is necessary for dental staff to be familiar with an appropriate protocol in such cases and to share information about the chemotherapy with a hematologist. To verify the effectiveness of our dental intervention protocol, we conducted a prospective study on the incidence of complications for each myelosuppressive grade of chemotherapy in patients with hematopoietic malignancy. We compared the incidence of complications between treatment P (patients who finished all the dental treatments according to the protocol) and treatment Q (patients who did not) per grade (A, B, C, D) and incidence of systemic or oral findings. We also compared the incidence of oral complication related to the residual teeth between first chemo (patients who were undergoing chemotherapy for the first time) and prior chemo (not the first time). There were significant differences in inflammatory complications between treatment P and treatment Q. We found that both systemic and oral inflammatory complications increased with higher-grade myelosuppressive chemotherapy. Additionally, there was a significant difference between the incidence of oral complications related to the residual teeth between first chemo and prior chemo. Complete implementation of the dental intervention protocol was associated with fewer oral and systemic infectious and inflammatory complications in patients with hematopoietic malignancies undergoing chemotherapy. The incidence of oral and systemic complications also increased with grade of chemotherapy. These results support the validity of our dental intervention protocol. We should pay close attention to the oral state of de novo hematopoietic malignancy patients.
Patients who have undergone hematopoietic stem cell transplantation (HSCT) for hematological disease experience high mortality when infected by coronavirus disease 2019 (COVID-19). However, the safety and efficacy of the COVID-19 vaccine in HSCT patients remain to be investigated. We prospectively evaluated the safety and immunogenicity of the BNT162b2 mRNA COVID-19 vaccine (Pfizer BioNTech) in 25 Japanese allogeneic HSCT patients in comparison with 19 healthy volunteers. While anti-S1 antibody titers in almost all healthy volunteers after the second dose were higher than the cut-off value reported previously, levels in HSCT patients after the second dose were diverse. Nineteen patients (76%) had seroconversion of anti-S1 IgG. The median optical density of antibody levels in HSCT patients with low IgG levels (<600 mg/dL), steroid treatment, or low lymphocytes (<1000/μL) was significantly lower than that in the other HSCT patients. There were no serious adverse events (>Grade 3) and no new development or exacerbation of graft-versus-host disease after vaccination. We concluded that the BNT162b2 mRNA vaccine is safe and effective in Japanese allogeneic HSCT patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.