Trifluridine (FTD) is a key component of the novel oral antitumor drug TAS-102, which consists of FTD and a thymidine phosphorylase inhibitor. Like 5-fluoro-2 0 -deoxyuridine (FdUrd), a deoxynucleoside form of 5-fluorouracil metabolite, FTD is sequentially phosphorylated and not only inhibits thymidylate synthase activity, but is also incorporated into DNA. Although TAS-102 was effective for the treatment of refractory metastatic colorectal cancer in clinical trials, the mechanism of FTDinduced cytotoxicity is not completely understood. Here, we show that FTD as well as FdUrd induce transient phosphorylation of Chk1 at Ser345, and that this is followed by accumulation of p53 and p21 proteins in p53-proficient human cancer cell lines. In particular, FTD induced p53-dependent sustained arrest at G 2 phase, which was associated with a proteasome-dependent decrease in the Cyclin B1 protein level and the suppression of CCNB1 and CDK1 gene expression. In addition, a p53-dependent increase in p21 protein was associated with an FTD-induced decrease in Cyclin B1 protein. Although numerous ssDNA and dsDNA breaks were induced by FdUrd, few DNA strand breaks were detected in FTD-treated HCT-116 cells despite massive FTD misincorporation into genomic DNA, suggesting that the antiproliferative effect of FTD is not due to the induction of DNA strand breaks. These distinctive effects of FTD provide insights into the cellular mechanism underlying its antitumor effect and may explain the clinical efficacy of TAS-102.
Trifluridine (FTD) is a key component of the novel oral antitumor drug TAS-102 (also named TFTD), which consists of FTD and a thymidine phosphorylase inhibitor. FTD is supposed to exert its cytotoxicity via massive misincorporation into DNA, but the underlying mechanism of FTD incorporation into DNA and its correlation with cytotoxicity are not fully understood. The present study shows that several antibodies against 5-bromo-2′-deoxyuridine (BrdU) specifically cross-react with FTD, either anchored to bovine serum albumin or incorporated into DNA. These antibodies are useful for several biological applications, such as fluorescence-activated cell sorting, fluorescent immunostaining and immunogold detection for electron microscopy. These techniques confirmed that FTD is mainly incorporated in the nucleus during S phase in a concentration-dependent manner. In addition, FTD was also detected by immunohistochemical staining in paraffin-embedded HCT-116 xenograft tumors after intraperitoneal administration of FTD. Intriguingly, FTD was hardly detected in surrounding matrices, which consisted of fibroblasts with marginal expression of the nucleoside transporter genes SLC29A1 and SLC29A2. Thus, applications using anti-BrdU antibodies will provide powerful tools to unveil the underlying mechanism of FTD action and to predict or evaluate the efficacy and adverse effects of TAS-102 clinically.
DNA replication stress is a predominant cause of genome instability, a driver of tumorigenesis and malignant progression. Nucleoside analog-type chemotherapeutic drugs introduce DNA damage and exacerbate DNA replication stress in tumor cells. However, the mechanisms underlying tumor cytotoxicity triggered by the drugs are not fully understood.Here, we show that the fluorinated thymidine analog trifluridine (FTD), an active component of the chemotherapeutic drug trifluridine/tipiracil, delayed DNA synthesis by human replicative DNA polymerases. FTD acted as an inefficient deoxyribonucleotide triphosphate source (FTD triphosphate) and as an obstacle base (trifluorothymine) in the template DNA strand. At the cellular level, FTD decreased thymidine triphosphate in the dNTP pool and induced FTD triphosphate accumulation, resulting in replication fork stalling caused by FTD incorporation into DNA. DNA lesions involving single-stranded DNA were generated as a result of replication fork stalling, and the p53-p21 pathway was activated. Although FTD suppressed tumor cell growth irrespective of p53 status, tumor cell fate diverged at the G2/M phase transition according to p53 status; tumor cells with wild-type p53 underwent cellular senescence via mitosis skip, whereas tumor cells that lost wild-type p53 underwent apoptotic cell death via aberrant late mitosis with severely impaired separation of sister chromatids.These results suggest that DNA replication stress induced by a nucleoside analog-type chemotherapeutic drug triggers tumor cytotoxicity by determining tumor cell fate according to p53 status.Significance: This study identified a unique type of DNA replication stress induced by trifluridine, which directs tumor cell fate either toward cellular senescence or apoptotic cell death according to p53 status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.